XB-ART-7036
Am J Physiol Cell Physiol
2002 Jul 01;2831:C155-68. doi: 10.1152/ajpcell.00587.2001.
Show Gene links
Show Anatomy links
An ancient prevertebrate Na+-nucleoside cotransporter (hfCNT) from the Pacific hagfish (Eptatretus stouti).
???displayArticle.abstract???
The human concentrative (Na+-linked) plasma membrane transport proteins hCNT1, hCNT2, and hCNT3 are pyrimidine nucleoside-selective (system cit), purine nucleoside-selective (system cif), or broadly selective for both pyrimidine and purine nucleosides (system cib), respectively. All have orthologs in other mammalian species and belong to a gene family (CNT) that has members in insects, nematodes, pathogenic yeast, and bacteria. Here, we report the cDNA cloning and functional characterization of a CNT family member from an ancient marine prevertebrate, the Pacific hagfish (Eptatretus stouti). This Na+-nucleoside symporter, designated hfCNT, is the first transport protein to be characterized in detail in hagfish and is a 683-amino acid residue protein with 13 predicted transmembrane helical segments (TMs). hfCNT was 52, 50, and 57% identical in sequence to hCNT1, hCNT2, and hCNT3, respectively. Similarity to hCNT3 was particularly marked in the TM 4-13 region. When produced in Xenopus oocytes, hfCNT exhibited the transport properties of system cib, with uridine, thymidine, and inosine apparent K(m) values of 10-45 microM. The antiviral nucleoside drugs 3'-azido-3'-deoxythymidine, 2',3'-dideoxycytidine, and 2',3'-dideoxyinosine were also transported. Simultaneous measurement of uridine-evoked currents and radiolabeled uridine uptake under voltage-clamp conditions gave a Na+-to-uridine coupling ratio of 2:1 (cf. 2:1 for hCNT3 and 1:1 for hCNT1/2). The apparent K50 value for Na+ activation was >100 mM. A 50:50 chimera between hfCNT and hCNT1 (TMs 7-13 of hfCNT replaced by those of hCNT1) exhibited hCNT1-like cation interactions, establishing that the structural determinants of cation stoichiometry and binding affinity were located within the carboxy-terminal half of the protein. The high degree of sequence similarity between hfCNT and hCNT3 may indicate functional constraints on the primary structure of the transporter and suggests that cib-type CNTs fulfill important physiological functions.
???displayArticle.pubmedLink??? 12055084
???displayArticle.link??? Am J Physiol Cell Physiol
Species referenced: Xenopus