Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-6194
J Physiol 2002 Nov 15;5451:13-26. doi: 10.1083/jcb.200204109.
Show Gene links Show Anatomy links

Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3.

Rajan S , Preisig-Müller R , Wischmeyer E , Nehring R , Hanley PJ , Renigunta V , Musset B , Schlichthörl G , Derst C , Karschin A , Daut J .


???displayArticle.abstract???
The two-pore-domain potassium channels TASK-1, TASK-3 and TASK-5 possess a conserved C-terminal motif of five amino acids. Truncation of the C-terminus of TASK-1 strongly reduced the currents measured after heterologous expression in Xenopus oocytes or HEK293 cells and decreased surface membrane expression of GFP-tagged channel proteins. Two-hybrid analysis showed that the C-terminal domain of TASK-1, TASK-3 and TASK-5, but not TASK-4, interacts with isoforms of the adapter protein 14-3-3. A pentapeptide motif at the extreme C-terminus of TASK-1, RRx(S/T)x, was found to be sufficient for weak but significant interaction with 14-3-3, whereas the last 40 amino acids of TASK-1 were required for strong binding. Deletion of a single amino acid at the C-terminal end of TASK-1 or TASK-3 abolished binding of 14-3-3 and strongly reduced the macroscopic currents observed in Xenopus oocytes. TASK-1 mutants that failed to interact with 14-3-3 isoforms (V411*, S410A, S410D) also produced only very weak macroscopic currents. In contrast, the mutant TASK-1 S409A, which interacts with 14-3-3-like wild-type channels, displayed normal macroscopic currents. Co-injection of 14-3-3zeta cRNA increased TASK-1 current in Xenopus oocytes by about 70 %. After co-transfection in HEK293 cells, TASK-1 and 14-3-3zeta (but not TASK-1DeltaC5 and 14-3-3zeta) could be co-immunoprecipitated. Furthermore, TASK-1 and 14-3-3 could be co-immunoprecipitated in synaptic membrane extracts and postsynaptic density membranes. Our findings suggest that interaction of 14-3-3 with TASK-1 or TASK-3 may promote the trafficking of the channels to the surface membrane.

???displayArticle.pubmedLink??? 12433946
???displayArticle.pmcLink??? PMC2290646
???displayArticle.link??? J Physiol


Species referenced: Xenopus
Genes referenced: kcnk3 kcnk9 ywhaz

References [+] :
Aitken, 14-3-3 and its possible role in co-ordinating multiple signalling pathways. 1996, Pubmed