Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
???displayArticle.abstract???
The specific and rapid destruction of cyclins A and B during mitosis is their most remarkable property. A short peptide motif of approximately 10 amino acids near the N-terminus, known as the destruction box, is absolutely required for programmed proteolysis. In this paper we show that although the destruction box is necessary for the degradation of cyclin A, it is not sufficient. Mutant versions of cyclin A that cannot form complexes with p34cdc2 are stable, which we interpret to mean that this cyclin must bind to p34cdc2 in order to undergo programmed proteolysis. Thus, N-terminal fragments of cyclin A containing little more than the destruction box and its surroundings are indestructible. p34cdc2 binding also appears to be required for the destruction of cyclin B2. In contrast, cyclin B1 does not require p34cdc2 binding for specific proteolysis. The systems for the proteolysis of cyclins A, B1 and B2 thus appear to show important differences in the way they recognize their substrates.
Boyle,
Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates.
1991, Pubmed
Boyle,
Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates.
1991,
Pubmed
Busa,
An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis.
1985,
Pubmed
,
Xenbase
Coull,
Functionalized membrane supports for covalent protein microsequence analysis.
1991,
Pubmed
Draetta,
Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement.
1988,
Pubmed
Draetta,
Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF.
1989,
Pubmed
Dunphy,
The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis.
1988,
Pubmed
,
Xenbase
Evan,
Characterization of the human c-myc protein using antibodies prepared against synthetic peptides.
1986,
Pubmed
Evans,
Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division.
1983,
Pubmed
Felix,
A post-ribosomal supernatant from activated Xenopus eggs that displays post-translationally regulated oscillation of its cdc2+ mitotic kinase activity.
1989,
Pubmed
,
Xenbase
Félix,
Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase.
1990,
Pubmed
,
Xenbase
Gallant,
Cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells.
1992,
Pubmed
,
Xenbase
Gautier,
Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+.
1988,
Pubmed
,
Xenbase
Gautier,
Cyclin is a component of maturation-promoting factor from Xenopus.
1990,
Pubmed
,
Xenbase
Ghiara,
A cyclin B homolog in S. cerevisiae: chronic activation of the Cdc28 protein kinase by cyclin prevents exit from mitosis.
1991,
Pubmed
Glotzer,
Cyclin is degraded by the ubiquitin pathway.
1991,
Pubmed
,
Xenbase
Hershko,
Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts.
1991,
Pubmed
Hunt,
Cyclins and their partners: from a simple idea to complicated reality.
1991,
Pubmed
Hunt,
The requirements for protein synthesis and degradation, and the control of destruction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo.
1992,
Pubmed
Izumi,
Phosphorylation of Xenopus cyclins B1 and B2 is not required for cell cycle transitions.
1991,
Pubmed
,
Xenbase
Kamps,
Determination of phosphoamino acid composition by acid hydrolysis of protein blotted to Immobilon.
1991,
Pubmed
Kobayashi,
Identification of the domains in cyclin A required for binding to, and activation of, p34cdc2 and p32cdk2 protein kinase subunits.
1992,
Pubmed
,
Xenbase
Kobayashi,
On the synthesis and destruction of A- and B-type cyclins during oogenesis and meiotic maturation in Xenopus laevis.
1991,
Pubmed
,
Xenbase
Labbé,
MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B.
1989,
Pubmed
Langan,
Mammalian growth-associated H1 histone kinase: a homolog of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells.
1989,
Pubmed
,
Xenbase
Lohka,
Purification of maturation-promoting factor, an intracellular regulator of early mitotic events.
1988,
Pubmed
,
Xenbase
Lohka,
Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components.
1983,
Pubmed
,
Xenbase
Lohka,
Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts.
1985,
Pubmed
,
Xenbase
Lorca,
Cyclin A-Cys41 does not undergo cell cycle-dependent degradation in Xenopus extracts.
1992,
Pubmed
,
Xenbase
Lorca,
Degradation of the proto-oncogene product p39mos is not necessary for cyclin proteolysis and exit from meiotic metaphase: requirement for a Ca(2+)-calmodulin dependent event.
1991,
Pubmed
,
Xenbase
Lorca,
An okadaic acid-sensitive phosphatase negatively controls the cyclin degradation pathway in amphibian eggs.
1991,
Pubmed
,
Xenbase
Lorca,
Cyclin A-cdc2 kinase does not trigger but delays cyclin degradation in interphase extracts of amphibian eggs.
1992,
Pubmed
,
Xenbase
Luca,
Both cyclin A delta 60 and B delta 97 are stable and arrest cells in M-phase, but only cyclin B delta 97 turns on cyclin destruction.
1991,
Pubmed
,
Xenbase
Luca,
Control of programmed cyclin destruction in a cell-free system.
1989,
Pubmed
Luo,
Cyanogen bromide cleavage and proteolytic peptide mapping of proteins immobilized to membranes.
1991,
Pubmed
Masui,
Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes.
1971,
Pubmed
Murray,
The role of cyclin synthesis and degradation in the control of maturation promoting factor activity.
1989,
Pubmed
,
Xenbase
Murray,
Cyclin synthesis drives the early embryonic cell cycle.
1989,
Pubmed
,
Xenbase
Newport,
Regulation of the cell cycle during early Xenopus development.
1984,
Pubmed
,
Xenbase
Nurse,
Universal control mechanism regulating onset of M-phase.
1990,
Pubmed
Pines,
p34cdc2: the S and M kinase?
1990,
Pubmed
Sagata,
The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs.
1989,
Pubmed
,
Xenbase
Swenson,
The clam embryo protein cyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytes.
1986,
Pubmed
,
Xenbase
van der Velden,
Mitotic arrest caused by the amino terminus of Xenopus cyclin B2.
1993,
Pubmed
,
Xenbase
Whitfield,
The A- and B-type cyclins of Drosophila are accumulated and destroyed in temporally distinct events that define separable phases of the G2-M transition.
1990,
Pubmed