Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-8688
Biophys J 2001 Aug 01;812:867-83.
Show Gene links Show Anatomy links

Kv4 channels exhibit modulation of closed-state inactivation in inside-out patches.

Beck EJ , Covarrubias M .


???displayArticle.abstract???
The mechanisms of inactivation gating of the neuronal somatodendritic A-type K(+) current and the cardiac I(to) were investigated in Xenopus oocyte macropatches expressing Kv4.1 and Kv4.3 channels. Upon membrane patch excision (inside-out), Kv4.1 channels undergo time-dependent acceleration of macroscopic inactivation accompanied by a parallel partial current rundown. These changes are readily reversible by patch cramming, suggesting the influence of modulatory cytoplasmic factors. The consequences of these perturbations were investigated in detail to gain insights into the biophysical basis and mechanisms of inactivation gating. Accelerated inactivation at positive voltages (0 to +110 mV) is mainly the result of reducing the time constant of slow inactivation and the relative weight of the slow component of inactivation. Concomitantly, the time constants of closed-state inactivation at negative membrane potentials (-90 to -50 mV) are substantially decreased in inside-out patches. Deactivation is moderately accelerated, and recovery from inactivation and the peak G--V curve exhibit little or no change. In agreement with more favorable closed-state inactivation in inside-out patches, the steady-state inactivation curve exhibits a hyperpolarizing shift of approximately 10 mV. Closed-state inactivation was similarly enhanced in Kv4.3. An allosteric model that assumes significant closed-state inactivation at all relevant voltages can explain Kv4 inactivation gating and the modulatory changes.

???displayArticle.pubmedLink??? 11463631
???displayArticle.pmcLink??? PMC1301559
???displayArticle.link??? Biophys J
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: kcnd1 kcnd3

References [+] :
An, Modulation of A-type potassium channels by a family of calcium sensors. 2000, Pubmed, Xenbase