Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-43676
J Biol Chem 2011 Nov 04;28644:37976-37989. doi: 10.1074/jbc.M111.263673.
Show Gene links Show Anatomy links

Identification of N-terminal extracellular domain determinants in nicotinic acetylcholine receptor (nAChR) α6 subunits that influence effects of wild-type or mutant β3 subunits on function of α6β2*- or α6β4*-nAChR.

Dash B , Bhakta M , Chang Y , Lukas RJ .


???displayArticle.abstract???
Despite the apparent function of naturally expressed mammalian α6*-nicotinic acetylcholine receptors (α6*-nAChR; where * indicates the known or possible presence of additional subunits), their functional and heterologous expression has been difficult. Here, we report that coexpression with wild-type β3 subunits abolishes the small amount of function typically seen for all-human or all-mouse α6β4*-nAChR expressed in Xenopus oocytes. However, levels of function and agonist potencies are markedly increased, and there is atropine-sensitive blockade of spontaneous channel opening upon coexpression of α6 and β4 subunits with mutant β3 subunits harboring valine-to-serine mutations at 9'- or 13'-positions. There is no function when α6 and β2 subunits are expressed alone or in the presence of wild-type or mutant β3 subunits. Interestingly, hybrid nAChR containing mouse α6 and human (h) β4 subunits have function potentiated rather than suppressed by coexpression with wild-type hβ3 subunits and potentiated further upon coexpression with hβ3(V9'S) subunits. Studies using nAChR chimeric mouse/human α6 subunits indicated that residues involved in effects seen with hybrid nAChR are located in the α6 subunit N-terminal domain. More specifically, nAChR hα6 subunit residues Asn-143 and Met-145 are important for dominant-negative effects of nAChR hβ3 subunits on hα6hβ4-nAChR function. Asn-143 and additional residues in the N-terminal domain of nAChR hα6 subunits are involved in the gain-of-function effects of nAChR hβ3(V9'S) subunits on α6β2*-nAChR function. These studies illuminate the structural bases for effects of β3 subunits on α6*-nAChR function and suggest that unique subunit interfaces involving the complementary rather than the primary face of α6 subunits are involved.

???displayArticle.pubmedLink??? 21832048
???displayArticle.pmcLink??? PMC3207470
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: chrna4

References [+] :
Azam, α-Conotoxin BuIA[T5A;P6O]: a novel ligand that discriminates between α6ß4 and α6ß2 nicotinic acetylcholine receptors and blocks nicotine-stimulated norepinephrine release. 2010, Pubmed, Xenbase