Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-8473
EMBO J 2001 Sep 03;2017:4987-97. doi: 10.1093/emboj/20.17.4987.
Show Gene links Show Anatomy links

The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay.

Le Hir H , Gatfield D , Izaurralde E , Moore MJ .


???displayArticle.abstract???
We recently reported that spliceosomes alter messenger ribonucleoprotein particle (mRNP) composition by depositing several proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. When assembled in vitro, this so-called 'exon-exon junction complex' (EJC) contains at least five proteins: SRm160, DEK, RNPS1, Y14 and REF. To better investigate its functional attributes, we now describe a method for generating spliced mRNAs both in vitro and in vivo that either do or do not carry the EJC. Analysis of these mRNAs in Xenopus laevis oocytes revealed that this complex is the species responsible for enhancing nucleocytoplasmic export of spliced mRNAs. It does so by providing a strong binding site for the mRNA export factors REF and TAP/p15. Moreover, by serving as an anchoring point for the factors Upf2 and Upf3, the EJC provides a direct link between splicing and nonsense-mediated mRNA decay. Finally, we show that the composition of the EJC is dynamic in vivo and is subject to significant evolution upon mRNA export to the cytoplasm.

???displayArticle.pubmedLink??? 11532962
???displayArticle.pmcLink??? PMC125616
???displayArticle.link??? EMBO J


Species referenced: Xenopus laevis
Genes referenced: dek rbm8a rnps1 srrm1 upf2 upf3a

References [+] :
Applequist, Cloning and characterization of HUPF1, a human homolog of the Saccharomyces cerevisiae nonsense mRNA-reducing UPF1 protein. 1997, Pubmed