Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-42939
Channels (Austin) 2011 Jan 01;53:225-7. doi: 10.4161/chan.5.3.15313.
Show Gene links Show Anatomy links

The "structurally minimal" isoform KChIP2d modulates recovery of K(v)4.3 N-terminal deletion mutant Δ2-39.

Hovind LJ , Campbell DL .


???displayArticle.abstract???
Mechanisms underlying K(v)4 (Shal type) potassium channel macroscopic (open state) inactivation and recovery are unknown, as are mechanisms by which KChIP2 isoforms modulate these two processes. In a recent study (Xenopus oocytes, 2 microelectrode voltage clamp) we demonstrated that: i) Partial deletion of the K(v)4.3 proximal N-terminal domain (Δ2-39; deletes N-terminal amino acids 2-39) not only slowed macroscopic inactivation, but also slowed the net rate of recovery; and ii) Co-expression of KChIP2b significantly accelerated the rate Δ2-39 recovery from inactivation. The latter effect demonstrated that an intact N-terminal domain was not obligatorily required for KChiP2b-mediated modulation of K(v)4.3 recovery. To extend these prior observations, we have employed identical protocols to determine effects of KChiP2d on Δ2-39 macroscopic recovery. KChiP2d is a "structurally minimal" isoform (consisting of only the last 70 amino acids of the common C-terminal domain of larger KChIP2 isoforms) that exerts functional modulatory effects on native K(v)4.3 channels. We demonstrate that KChiP2d also accelerates Δ2-39 recovery from macroscopic inactivation. Consistent with our prior Δ2-39 + KChIP2b study, these Δ2-39 + KChIP2d results: i) Further indicate that KChIP2 isoform-mediated acceleration of K(v)4.3 macroscopic recovery is not obligatorily dependent upon an intact proximal N-terminal; and ii) Suggest that the last 70 amino acids of the common C-terminal of KChiP2 isoforms may contain the domain(s) responsible for modulation of recovery.

???displayArticle.pubmedLink??? 21422811
???displayArticle.pmcLink??? PMC3225751
???displayArticle.link??? Channels (Austin)
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: kcnip2

References [+] :
Aldrich, Fifty years of inactivation. 2001, Pubmed