XB-ART-30471
J Embryol Exp Morphol
1982 Dec 01;72:251-67.
Show Gene links
Show Anatomy links
Development of the optic nerve in Xenopus laevis. II. Gliogenesis, myelination and metamorphic remodelling.
???displayArticle.abstract???
We studied the time of origin, development and location of glial elements in the developing optic nerve of Xenopus with light and electron microscopy. The first cells acting as a primitive glia are ependymal cells lying dorsal to the chiasmatic optic nerve (CON) at Nieuwkoop & Faber (1956) NF stage 39. Later (stage 47/48), immature astrocyte cell bodies migrate from the periphery of the middle optic nerve (MON) into the central fibre mass along cytoplasmic processes extending from the outer glia limitans. Shortly thereafter, oligodendrocyte cell bodies appear in the centre of the fibre mass and myelination begins, first in the middle of the MON, spreading from the centre distally towards the chiasm and proximally to the retina. In late tadpoles myelinated fibres appear first in the CON then in the retinal optic nerve (RON) increasing markedly in juveniles and adults. Segment-specific patterns of glia and myelination appear during optic nerve development. During metamorphic climax, the optic nerve shortens (Cullen & Webster, 1979), a process involving myelin and axon remodelling primarily in the MON. Neither the profound changes during metamorphosis, nor the processes of gliogenesis and myelination significantly alter the underlying chronotopic ordering in the tadpole nerve. In juvenile and adult optic nerves, however, as myelination and gliogenesis increase, and as more axons mature and grow in diameter, the dorsoventral chronotopic arrangement of axons becomes less apparent.
???displayArticle.pubmedLink??? 7183742
???displayArticle.grants???