Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-7658
Exp Cell Res 2002 Feb 01;2731:54-64. doi: 10.1006/excr.2001.5421.
Show Gene links Show Anatomy links

Sensitivity of the origin decision point to specific inhibitors of cellular signaling and metabolism.

Keezer SM , Gilbert DM .


???displayArticle.abstract???
Chinese hamster ovary (CHO) cells become committed to initiate DNA replication at specific sites within the dihydrofolate reductase (DHFR) locus at a discrete point during G1 phase, the origin decision point (ODP). To better understand the requirements for passage through the ODP, we evaluated the ability of various inhibitors of G1-phase progression to prevent passage through the ODP. Of several protein kinase inhibitors tested, only inhibitors of cyclin-dependent kinase (cdk) activity (roscovitine, olomoucine) prevented passage through the ODP. Inhibitors of MAP kinase (PD98059), PKA (KT5720), PKG (KT5823), as well as inhibition of integrin-mediated signaling by preventing cell adhesion, all arrested cells in the post-ODP stages of G1 phase. Intriguingly, inhibitors of proteasome-dependent proteolysis (MG132, ALLN, lactacystin) and transcription (DRB, alpha-amanitin, actinomycin D) also inhibited passage through the ODP, whereas inhibition of protein synthesis (cycloheximide) had no effect on the ODP. Cross-checking each inhibitor for its affect on transcription revealed that the ODP could be uncoupled from transcription; MG132 and lactacystin did not inhibit transcription, and KT5720 was a potent inhibitor of transcription. Importantly, cells that were arrested upstream of the ODP with either roscovitine or lactacystin contained functional prereplication complexes (pre-RCs), supporting previous findings that pre-RC formation is not sufficient for origin specification. These results demonstrate that specification of the DHFR origin is independent of growth signaling mechanisms and does not require G1-phase synthesis of a protein regulator such as a cyclin or Dbf4/ASK1, positioning the ODP after pre-RC formation but prior to the activation of the known S-phase promoting kinases.

???displayArticle.pubmedLink??? 11795946
???displayArticle.link??? Exp Cell Res
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: dbf4b dhfr mapk1 prkg1