XB-ART-52182
Dev Comp Immunol
2016 Oct 01;63:136-43. doi: 10.1016/j.dci.2016.05.014.
Show Gene links
Show Anatomy links
The unique myelopoiesis strategy of the amphibian Xenopus laevis.
???displayArticle.abstract???
Myeloid progenitors reside within specific hematopoietic organs and commit to progenitor lineages bearing megakaryocyte/erythrocyte (MEP) or granulocyte/macrophage potentials (GMP) within these sites. Unlike other vertebrates, the amphibian Xenopus laevis committed macrophage precursors are absent from the hematopoietic subcapsular liver and instead reside within their bone marrow. Presently, we demonstrate that while these frogs' liver-derived cells are unresponsive to recombinant forms of principal X. laevis macrophage (colony-stimulating factor-1; CSF-1) and granulocyte (CSF-3) growth factors, bone marrow cells cultured with CSF-1 and CSF-3 exhibit respectively archetypal macrophage and granulocyte morphology, gene expression and functionalities. Moreover, we demonstrate that liver, but not bone marrow cells possess erythropoietic capacities when stimulated with a X. laevis erythropoietin. Together, our findings indicate that X. laevis retain their MEP within the hematopoietic liver while sequestering their GMP to the bone marrow, thus marking a very novel myelopoietic strategy as compared to those seen in other jawed vertebrate species.
???displayArticle.pubmedLink??? 27234705
???displayArticle.link??? Dev Comp Immunol
Species referenced: Xenopus laevis
Genes referenced: csf1r ctsl epo il34 mpo