Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-38229
Neuron 2008 Jul 10;591:98-109. doi: 10.1016/j.neuron.2008.05.006.
Show Gene links Show Anatomy links

Extent of voltage sensor movement during gating of shaker K+ channels.

Posson DJ , Selvin PR .


???displayArticle.abstract???
Voltage-driven activation of Kv channels results from conformational changes of four voltage sensor domains (VSDs) that surround the K(+) selective pore domain. How the VSD helices rearrange during gating is an area of active research. Luminescence resonance energy transfer (LRET) is a powerful spectroscopic ruler uniquely suitable for addressing the conformational trajectory of these helices. Using a geometric analysis of numerous LRET measurements, we were able to estimate LRET probe positions relative to existing structural models. The experimental movement of helix S4 does not support a large 15-20 A transmembrane "paddle-type" movement or a near-zero A vertical "transporter-type" model. Rather, our measurements demonstrate a moderate S4 displacement of 10 +/- 5 A, with a vertical component of 5 +/- 2 A. The S3 segment moves 2 +/- 1 A in the opposite direction and is therefore not moving as an S3-S4 rigid body.

???displayArticle.pubmedLink??? 18614032
???displayArticle.pmcLink??? PMC2603612
???displayArticle.link??? Neuron
???displayArticle.grants??? [+]


References [+] :
Aggarwal, Contribution of the S4 segment to gating charge in the Shaker K+ channel. 1996, Pubmed, Xenbase