Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-43495
Am J Physiol Renal Physiol 2011 May 01;3005:F1089-95. doi: 10.1152/ajprenal.00610.2010.
Show Gene links Show Anatomy links

Second transmembrane domain modulates epithelial sodium channel gating in response to shear stress.

Abi-Antoun T , Shi S , Tolino LA , Kleyman TR , Carattino MD .


???displayArticle.abstract???
Na(+) absorption and K(+) secretion in the distal segments of the nephron are modulated by the tubular flow rate. Epithelial Na(+) channels (ENaC), composed of α-, β-, and γ-subunits respond to laminar shear stress (LSS) with an increase in open probability. Higher vertebrates express a δ-ENaC subunit that is functionally related to the α-subunit, while sharing only 35% of sequence identity. We investigated the response of δβγ channels to LSS. Both the time course and magnitude of activation of δβγ channels by LSS were remarkably different from those of αβγ channels. ENaC subunits have similar topology, with an extracellular region connected by two transmembrane domains with intracellular N and C termini. To identify the specific domains that are responsible for the differences in the response to flow of αβγ and δβγ channels, we generated a series of α-δ chimeras and site-specific α-subunit mutants and examined parameters of activation by LSS. We found that specific sites in the region encompassing and just preceding the second transmembrane domain were responsible for the differences in the magnitude and time course of channel activation by LSS.

???displayArticle.pubmedLink??? 21307123
???displayArticle.pmcLink??? PMC3094055
???displayArticle.link??? Am J Physiol Renal Physiol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: lss

References [+] :
Althaus, Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. 2007, Pubmed, Xenbase