Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Gaskins CJ
,
Fiser-Littell RM
,
Duke AL
,
Hanas JS
.
???displayArticle.abstract???
Species variation in transcription factor IIIA (TFIIIA) was examined by comparing the abilities of TFIIIAs isolated from different Xenopus and Rana species to 1) bind rabbit anti-Xenopus laevis TFIIIA IgG, 2) specifically interact with the Xenopus borealis somatic 5S RNA gene, and 3) promote transcription of the Xenopus borealis 5S RNA gene in vitro. In immunoblot assays, Rana catesbeiana or Rana pipiens TFIIIA did not react readily with rabbit anti-Xenopus laevis TFIIIA IgG (assayed with anti-rabbit F(ab')2 fragment conjugated with alkaline phosphatase) whereas Xenopus borealis TFIIIA exhibited similar reactivity with this IgG as Xenopus laevis TFIIIA. When compared to Xenopus TFIIIAs, Rana TFIIIAs exhibited similar interactions with the 3' portion of the intragenic control region of the Xenopus 5S RNA gene (to residue +78 on the coding strand and up to and including +74 on the non-coding strand, nucleotides protected from DNase I digestion by the N-terminal half of Xenopus TFIIIA) and incomplete interactions with the remaining 5' portion of the control region (nucleotides protected from DNase I digestion by the C-terminal half of Xenopus TFIIIA). In a Xenopus laevis unfertilized egg extract, Rana catesbeiana and Rana pipiens TFIIIAs promoted transcription of the Xenopus borealis somatic 5S RNA gene less efficiently than Xenopus laevis and Xenopus borealis TFIIIAs.
Berg,
Potential metal-binding domains in nucleic acid binding proteins.
1986,
Pubmed
,
Xenbase
Birkenmeier,
A nuclear extract of Xenopus laevis oocytes that accurately transcribes 5S RNA genes.
1978,
Pubmed
,
Xenbase
Bogenhagen,
A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3' border of the region.
1980,
Pubmed
,
Xenbase
Bradford,
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
1976,
Pubmed
Brown,
The primary structure of transcription factor TFIIIA has 12 consecutive repeats.
1985,
Pubmed
,
Xenbase
Dao,
An improved method of antigen detection on nitrocellulose: in situ staining of alkaline phosphatase conjugated antibody.
1985,
Pubmed
Engelke,
Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes.
1980,
Pubmed
,
Xenbase
Fiser-Littell,
Novobiocin inhibits Xenopus transcription factor IIIA-DNA interactions.
1987,
Pubmed
,
Xenbase
Fiser-Littell,
Deletion of the N-terminal region of Xenopus transcription factor IIIA inhibits specific binding to the 5 S RNA gene.
1988,
Pubmed
,
Xenbase
Galas,
DNAse footprinting: a simple method for the detection of protein-DNA binding specificity.
1978,
Pubmed
Ginsberg,
Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development.
1984,
Pubmed
,
Xenbase
Hanas,
Binding of Xenopus transcription factor A to 5S RNA and to single stranded DNA.
1984,
Pubmed
,
Xenbase
Hanas,
Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene.
1983,
Pubmed
,
Xenbase
Hanas,
Cooperative model for the binding of Xenopus transcription factor A to the 5S RNA gene.
1983,
Pubmed
,
Xenbase
Honda,
Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation.
1980,
Pubmed
,
Xenbase
Johnston,
Genetic evidence that zinc is an essential co-factor in the DNA binding domain of GAL4 protein.
,
Pubmed
Kadonaga,
Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain.
1987,
Pubmed
Laskey,
Assembly of SV40 chromatin in a cell-free system from Xenopus eggs.
1977,
Pubmed
,
Xenbase
Lassar,
Transcription of class III genes: formation of preinitiation complexes.
1983,
Pubmed
,
Xenbase
Miller,
Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes.
1985,
Pubmed
,
Xenbase
Pelham,
A specific transcription factor that can bind either the 5S RNA gene or 5S RNA.
1980,
Pubmed
,
Xenbase
Picard,
Isolation of a 7S particle from Xenopus laevis oocytes: a 5S RNA-protein complex.
1979,
Pubmed
,
Xenbase
Sabbah,
The binding activity of estrogen receptor to DNA and heat shock protein (Mr 90,000) is dependent on receptor-bound metal.
1987,
Pubmed
Sakonju,
A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5' border of the region.
1980,
Pubmed
,
Xenbase
Sakonju,
Contact points between a positive transcription factor and the Xenopus 5S RNA gene.
1982,
Pubmed
,
Xenbase
Shastry,
Altered levels of a 5 S gene-specific transcription factor (TFIIIA) during oogenesis and embryonic development of Xenopus laevis.
1984,
Pubmed
,
Xenbase
Towbin,
Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.
1979,
Pubmed
Tso,
Structure of the gene for Xenopus transcription factor TFIIIA.
1986,
Pubmed
,
Xenbase
Vrana,
Mapping functional regions of transcription factor TFIIIA.
1988,
Pubmed
,
Xenbase