Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
J Physiol
2005 Mar 01;563Pt 2:359-68. doi: 10.1113/jphysiol.2004.080887.
Show Gene links
Show Anatomy links
Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K+ channels.
???displayArticle.abstract??? KCNQ1 (Kv 7.1) alpha-subunits and KCNE1 beta-subunits co-assemble to form channels that conduct the slow delayed rectifier K+ current (IKs) in the heart. Mutations in either subunit cause long QT syndrome (LQTS), an inherited disorder of cardiac repolarization. Here, the functional consequences of the LQTS-associated missense mutation V310I and several nearby residues were determined. Val310 is located at the base of the pore helix of KCNQ1, two residues below the TIGYG signature sequence that defines the K+ selectivity filter. Channels were heterologously expressed in Xenopus laevis oocytes and currents were recorded using the two-microelectrode voltage-clamp technique. V310I KCNQ1 reduced IKs amplitude when co-expressed with wild-type KCNQ1 and KCNE1 subunits. Val310 was also mutated to Gly, Ala or Leu to explore the importance of amino acid side chain volume at this position. Like V310I, V310L KCNQ1 channels gated normally. Unexpectedly, V310G and V310A KCNQ1 channels inactivated strongly and did not close normally in response to membrane hyperpolarization. Based on a homology model of the KCNQ1 channel pore, we speculate that the side group of residue 310 can interact with specific residues in the S5 and S6 domains to alter channel gating. When volume of the side chain is small, the stability of the closed state is disrupted and the extent of channel inactivation is enhanced. We mutated putative interacting residues in S5 and S6 and found that mutant Leu273 and Phe340 channels also can disrupt close states and modify inactivation. Together these findings indicate the importance of a putative pore helix-S5-S6 interaction for normal KCNQ1 channel deactivation and confirm its role in KCNQ1 inactivation. Disturbance of these interactions might underly LQTS associated with KCNQ1 mutant channels.
Barhanin,
K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current.
1996, Pubmed,
Xenbase
Barhanin,
K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current.
1996,
Pubmed
,
Xenbase
De Biasi,
Histidine substitution identifies a surface position and confers Cs+ selectivity on a K+ pore.
1993,
Pubmed
Doyle,
The structure of the potassium channel: molecular basis of K+ conduction and selectivity.
1998,
Pubmed
Espinosa,
Dynamic interaction of S5 and S6 during voltage-controlled gating in a potassium channel.
2001,
Pubmed
,
Xenbase
Hoshi,
Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region.
1991,
Pubmed
,
Xenbase
Jiang,
The open pore conformation of potassium channels.
2002,
Pubmed
Kiss,
Modulation of C-type inactivation by K+ at the potassium channel selectivity filter.
1998,
Pubmed
Lins,
Analysis of accessible surface of residues in proteins.
2003,
Pubmed
Liu,
A side chain in S6 influences both open-state stability and ion permeation in a voltage-gated K+ channel.
1998,
Pubmed
,
Xenbase
Loots,
Protein rearrangements underlying slow inactivation of the Shaker K+ channel.
1998,
Pubmed
López-Barneo,
Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels.
1993,
Pubmed
,
Xenbase
Melman,
KCNE1 binds to the KCNQ1 pore to regulate potassium channel activity.
2004,
Pubmed
Morais-Cabral,
Energetic optimization of ion conduction rate by the K+ selectivity filter.
2001,
Pubmed
Pusch,
Two open states and rate-limiting gating steps revealed by intracellular Na+ block of human KCNQ1 and KCNQ1/KCNE1 K+ channels.
2001,
Pubmed
Pusch,
Increase of the single-channel conductance of KvLQT1 potassium channels induced by the association with minK.
1998,
Pubmed
,
Xenbase
Romey,
Molecular mechanism and functional significance of the MinK control of the KvLQT1 channel activity.
1997,
Pubmed
Sanguinetti,
Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel.
1996,
Pubmed
,
Xenbase
Sarkar,
The "megaprimer" method of site-directed mutagenesis.
1990,
Pubmed
Seebohm,
Identification of specific pore residues mediating KCNQ1 inactivation. A novel mechanism for long QT syndrome.
2001,
Pubmed
,
Xenbase
Sesti,
Single-channel characteristics of wild-type IKs channels and channels formed with two minK mutants that cause long QT syndrome.
1998,
Pubmed
,
Xenbase
Shalaby,
Dominant-negative KvLQT1 mutations underlie the LQT1 form of long QT syndrome.
1997,
Pubmed
,
Xenbase
Smith,
The inward rectification mechanism of the HERG cardiac potassium channel.
1996,
Pubmed
Tai,
The conduction pore of a cardiac potassium channel.
1998,
Pubmed
,
Xenbase
Westenskow,
Compound mutations: a common cause of severe long-QT syndrome.
2004,
Pubmed
,
Xenbase
Yang,
Single-channel properties of IKs potassium channels.
1998,
Pubmed
,
Xenbase
Zhou,
Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution.
2001,
Pubmed