Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10355
J Biol Chem 2000 Dec 22;27551:39886-93. doi: 10.1074/jbc.M003822200.
Show Gene links Show Anatomy links

Non-coordinate regulation of endogenous epithelial sodium channel (ENaC) subunit expression at the apical membrane of A6 cells in response to various transporting conditions.

Weisz OA , Wang JM , Edinger RS , Johnson JP .


???displayArticle.abstract???
In many epithelial tissues in the body (e.g. kidney distal nephron, colon, airways) the rate of Na(+) reabsorption is governed by the activity of the epithelial Na(+) channel (ENaC). ENaC activity in turn is regulated by a number of factors including hormones, physiological conditions, and other ion channels. To begin to understand the mechanisms by which ENaC is regulated, we have examined the trafficking and turnover of ENaC subunits in A6 cells, a polarized, hormonally responsive Xenopus kidney cell line. As previously observed by others, the half-life of newly synthesized ENaC subunits was universally short ( approximately 2 h). However, the half-lives of alpha- and gamma-ENaC subunits that reached the apical cell surface were considerably longer (t(12) > 24 h), whereas intriguingly, the half-life of cell surface beta-ENaC was only approximately 6 h. We then examined the effects of various modulators of sodium transport on cell surface levels of individual ENaC subunits. Up-regulation of ENaC-mediated sodium conductance by overnight treatment with aldosterone or by short term incubation with vasopressin dramatically increased cell surface levels of beta-ENaC without affecting alpha- or gamma-ENaC levels. Conversely, treatment with brefeldin A selectively decreased the amount of beta-ENaC at the apical membrane. Short term treatment with aldosterone or insulin had no effect on cell surface amounts of any subunits. Subcellular fractionation revealed a selective loss of beta-ENaC from early endosomal pools in response to vasopressin. Our data suggest the possibility that trafficking and turnover of individual ENaC subunits at the apical membrane of A6 cells is non-coordinately regulated. The selective trafficking of beta-ENaC may provide a mechanism for regulating sodium conductance in response to physiological stimuli.

???displayArticle.pubmedLink??? 10978318
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: avp ins scnn1b scnn1g