Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-5709
Am J Physiol Renal Physiol 2003 Jun 01;2846:F1145-54. doi: 10.1152/ajprenal.00421.2002.
Show Gene links Show Anatomy links

cAMP-dependent activation of the renal-specific Na+-K+-2Cl- cotransporter is mediated by regulation of cotransporter trafficking.

Meade P , Hoover RS , Plata C , Vázquez N , Bobadilla NA , Gamba G , Hebert SC .


???displayArticle.abstract???
The murine apical bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter gene (mBSC1) exhibits two spliced isoform products that differ at the COOH-terminal domain. A long COOH-terminal isoform (L-mBSC1) encodes the Na(+)-K(+)-2Cl(-) cotransporter, and a short isoform (S-mBSC1) exerts a dominant-negative effect on L-mBSC1 cotransporter activity that is abrogated by cAMP. However, the mechanism of this dominant-negative effect was not clear. In this study, we used confocal microscopic analysis of an enhanced green fluorescent protein (EGFP) fusion construct (L-mBSC1-EGFP) expressed to characterize the surface expression of the L-BSC1 isoform in Xenopus laevis oocytes. Functional expression was also assessed in L-mBSC1-injected oocytes by measuring the bumetanide-sensitive (86)Rb(+) uptake. Oocytes injected with L-mBSC1-EGFP cRNA developed a distinct plasma membrane-associated fluorescence that colocalized with the fluorescent membrane dye FM 4-64. The fluorescence intensity in L-mBSC1-EGFP oocytes did not change after cAMP was added to the extracellular medium. In contrast, L-mBSC1-EGFP fluorescence intensity was reduced in a dose-dependent manner, with coexpression of S-mBSC1. The inhibitory effect of S-mBSC1 was abrogated by cAMP. Finally, the exocytosis inhibitor colchicine blocked the effect of cAMP on the L-mBSC1-EGFP/S-mBSC1-coinjected oocytes. All changes in L-mBSC1 surface expression correlated with modification of bumetanide-sensitive (86)Rb(+) uptake. Our data suggest that the dominant-negative effect of S-mBSC1 on L-mBSC1 transport function is due to the effects of the cotransporter on trafficking.

???displayArticle.pubmedLink??? 12604467
???displayArticle.link??? Am J Physiol Renal Physiol
???displayArticle.grants??? [+]

Genes referenced: camp