Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-34654
Cell 2003 Oct 03;1151:83-95. doi: 10.1016/s0092-8674(03)00725-6.
Show Gene links Show Anatomy links

The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain.

Elia AE , Rellos P , Haire LF , Chao JW , Ivins FJ , Hoepker K , Mohammad D , Cantley LC , Smerdon SJ , Yaffe MB .


???displayArticle.abstract???
Polo-like kinases (Plks) perform crucial functions in cell-cycle progression and multiple stages of mitosis. Plks are characterized by a C-terminal noncatalytic region containing two tandem Polo boxes, termed the Polo-box domain (PBD), which has recently been implicated in phosphodependent substrate targeting. We show that the PBDs of human, Xenopus, and yeast Plks all recognize similar phosphoserine/threonine-containing motifs. The 1.9 A X-ray structure of a human Plk1 PBD-phosphopeptide complex shows that the Polo boxes each comprise beta6alpha structures that associate to form a 12-stranded beta sandwich domain. The phosphopeptide binds along a conserved, positively charged cleft located at the edge of the Polo-box interface. Mutations that specifically disrupt phosphodependent interactions abolish cell-cycle-dependent localization and provide compelling phenotypic evidence that PBD-phospholigand binding is necessary for proper mitotic progression. In addition, phosphopeptide binding to the PBD stimulates kinase activity in full-length Plk1, suggesting a conformational switching mechanism for Plk regulation and a dual functionality for the PBD.

???displayArticle.pubmedLink??? 14532005
???displayArticle.link??? Cell
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: plk1

References :
Leung, A polo match for Plk1. 2003, Pubmed