Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Structural determinants of channel conductance in fetal and adult rat muscle acetylcholine receptors.
Herlitze S
,
Villarroel A
,
Witzemann V
,
Koenen M
,
Sakmann B
.
???displayArticle.abstract???
1. The structural basis of the developmentally regulated increase in endplate channel conductance in rat, where the gamma-subunit of the fetal muscle acetylcholine receptor (gamma-AChR) is replaced by the epsilon-subunit in the adult muscle receptor (epsilon-AChR), was investigated by analysing the structure of gamma- and epsilon-subunit genes and by expressing recombinant AChR channels of different molecular composition in Xenopus oocytes and measuring their single-channel conductance. 2. The gamma- and epsilon-subunit genes each have twelve exons. In both subunits, the four homologous segments, designated M1, M2, M3 and M4, which are thought to contribute to the formation of the pore, are encoded by four separate exons, E7, E8, E9 and E12. 3. Chimaeric epsilon(gamma)- or gamma(epsilon)-subunits were constructed from the parental epsilon- and gamma-subunits, respectively. Exchanging the four hydrophobic segments (M1-M4) of the gamma-subunit for those of the epsilon-subunit and vice versa completely reversed the difference in conductance between gamma-AChR and epsilon-AChR channels. 4. Effects of single- and multiple-point mutations in M1-M4 segments of gamma- and epsilon-subunits indicate that the major determinants of the difference in conductance between fetal and adult endplate channels are located in the M2 segment. The key differences are the exchange of alanine/threonine (gamma-subunit) for serine/isoleucine (epsilon-subunit) in M2, and the lysine (gamma-subunit) for glutamine (epsilon-subunit) exchanges in the regions flanking the M2 segment.
Akabas,
Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit.
1994, Pubmed,
Xenbase
Akabas,
Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit.
1994,
Pubmed
,
Xenbase
Buonanno,
Isolation and characterization of the beta and epsilon subunit genes of mouse muscle acetylcholine receptor.
1989,
Pubmed
Charnet,
An open-channel blocker interacts with adjacent turns of alpha-helices in the nicotinic acetylcholine receptor.
1990,
Pubmed
Görne-Tschelnokow,
The transmembrane domains of the nicotinic acetylcholine receptor contain alpha-helical and beta structures.
1994,
Pubmed
Gu,
Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervated rat muscle.
1988,
Pubmed
Herlitze,
A general and rapid mutagenesis method using polymerase chain reaction.
1990,
Pubmed
Ho,
Site-directed mutagenesis by overlap extension using the polymerase chain reaction.
1989,
Pubmed
Hucho,
The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits.
1986,
Pubmed
Imoto,
Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance.
1988,
Pubmed
,
Xenbase
Imoto,
Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel.
,
Pubmed
,
Xenbase
Krieg,
Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs.
1984,
Pubmed
,
Xenbase
Leonard,
Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor.
1988,
Pubmed
,
Xenbase
Melton,
Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter.
1984,
Pubmed
Methfessel,
Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels.
1986,
Pubmed
,
Xenbase
Pedersen,
Structure of the noncompetitive antagonist-binding site of the Torpedo nicotinic acetylcholine receptor. [3H]meproadifen mustard reacts selectively with alpha-subunit Glu-262.
1992,
Pubmed
Shibahara,
Cloning and sequence analysis of human genomic DNA encoding gamma subunit precursor of muscle acetylcholine receptor.
1985,
Pubmed
Unwin,
Acetylcholine receptor channel imaged in the open state.
1995,
Pubmed
Yu,
Single-channel properties of mouse-Torpedo acetylcholine receptor hybrids expressed in Xenopus oocytes.
1991,
Pubmed
,
Xenbase