Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10670
Proc Natl Acad Sci U S A 2000 Jul 18;9715:8641-6. doi: 10.1073/pnas.97.15.8641.
Show Gene links Show Anatomy links

Pentameric assembly of a neuronal glutamate transporter.

Eskandari S , Kreman M , Kavanaugh MP , Wright EM , Zampighi GA .


???displayArticle.abstract???
Freeze-fracture electron microscopy was used to study the structure of a human neuronal glutamate transporter (EAAT3). EAAT3 was expressed in Xenopus laevis oocytes, and its function was correlated with the total number of transporters in the plasma membrane of the same cells. Function was assayed as the maximum charge moved in response to a series of transmembrane voltage pulses. The number of transporters in the plasma membrane was determined from the density of a distinct 10-nm freeze-fracture particle, which appeared in the protoplasmic face only after EAAT3 expression. The linear correlation between EAAT3 maximum carrier-mediated charge and the total number of the 10-nm particles suggested that this particle represented functional EAAT3 in the plasma membrane. The cross-sectional area of EAAT3 in the plasma membrane (48 +/- 5 nm(2)) predicted 35 +/- 3 transmembrane alpha-helices in the transporter complex. This information along with secondary structure models (6-10 transmembrane alpha-helices) suggested an oligomeric state for EAAT3. EAAT3 particles were pentagonal in shape in which five domains could be identified. They exhibited fivefold symmetry because they appeared as equilateral pentagons and the angle at the vertices was 110 degrees. Each domain appeared to contribute to an extracellular mass that projects approximately 3 nm into the extracellular space. Projections from all five domains taper toward an axis passing through the center of the pentagon, giving the transporter complex the appearance of a penton-based pyramid. The pentameric structure of EAAT3 offers new insights into its function as both a glutamate transporter and a glutamate-gated chloride channel.

???displayArticle.pubmedLink??? 10900021
???displayArticle.pmcLink??? PMC27001
???displayArticle.link??? Proc Natl Acad Sci U S A
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: slc1a1

References [+] :
Arriza, Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. 1994, Pubmed, Xenbase