Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-54792
Neuron 2017 Apr 05;941:58-64.e3. doi: 10.1016/j.neuron.2017.03.018.
Show Gene links Show Anatomy links

Allosteric Interactions between NMDA Receptor Subunits Shape the Developmental Shift in Channel Properties.

Sun W , Hansen KB , Jahr CE .


???displayArticle.abstract???
During development of the central nervous system, there is a shift in the subunit composition of NMDA receptors (NMDARs) resulting in a dramatic acceleration of NMDAR-mediated synaptic currents. This shift coincides with upregulation of the GluN2A subunit and triheteromeric GluN1/2A/2B receptors with fast deactivation kinetics, whereas expression of diheteromeric GluN1/2B receptors with slower deactivation kinetics is decreased. Here, we show that allosteric interactions occur between the glutamate-binding GluN2 subunits in triheteromeric GluN1/2A/2B NMDARs. This allosterism is dominated by the GluN2A subunit and results in functional properties not predicted by those of diheteromeric GluN1/2A and GluN1/2B NMDARs. These findings suggest that GluN1/2A/2B NMDARs may maintain some signaling properties of the GluN2B subunit while having the kinetic properties of GluN1/2A NMDARs and highlight the complexity in NMDAR signaling created by diversity in subunit composition.

???displayArticle.pubmedLink??? 28384476
???displayArticle.pmcLink??? PMC5391998
???displayArticle.link??? Neuron
???displayArticle.grants??? [+]


References [+] :
Akazawa, Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. 1994, Pubmed