XB-ART-25057
Eur J Biochem
1991 Feb 14;1953:601-9.
Show Gene links
Show Anatomy links
Secondary structure of the 5' external transcribed spacer of vertebrate pre-rRNA. Presence of phylogenetically conserved features.
???displayArticle.abstract???
Eucaryotic pre-rRNA spacers are evolutionarily highly variable in sequence and size, and are markedly expanded in vertebrates, particularly in mammals. The longest mammalian spacer by far is the 3.5-4-kb 5' external transcribed spacer (5'-ETS), which is excised in two steps. We present a folding model for the entire mammalian 5'-ETS, derived from comparative analyses and thermodynamic predictions for mouse, rat and human sequences, which should prove helpful in identifying cis-acting processing signals, particularly those involved in its early internal cleavage, for which U3 RNA is an essential factor. Although the rodent and primate sequences have extensively diverged, a series of relatively conserved sequence tracts can nevertheless be identified: they participate in base-pairing, preserved through the occurrence of compensatory base changes, which delineate four independent domains of secondary structure. The first domain is located entirely upstream from the site of internal cleavage. The second domain, immediately downstream from this cleavage site, encompasses most of the region required for faithful and efficient in vitro processing at this site. Phylogenetically supported conserved structures also define two other independent domains, encompassing most of the 5'-ETS length, with the presence of giant hairpins (extending from the conserved core elements) which exhibit both some analogous features and substantial differences between man and mouse. The comparative analysis was extended to the two other vertebrate sequences available so far, amphibians Xenopus laevis and Xenopus borealis. The amphibian folding model, supported by comparative evidence between these two species, displays some features in common with the mammalian model, with a similar organization into four separate domains of secondary structure, suggesting the functional relevance of these structures in the process of ribosome formation.
???displayArticle.pubmedLink??? 1999184
???displayArticle.link??? Eur J Biochem