Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-42791
Curr Biol 2011 Feb 22;214:300-5. doi: 10.1016/j.cub.2011.01.016.
Show Gene links Show Anatomy links

Noggin and noggin-like genes control dorsoventral axis regeneration in planarians.

Molina MD , Neto A , Maeso I , Gómez-Skarmeta JL , Saló E , Cebrià F .


???displayArticle.abstract???
Planarians regenerate a whole animal from a small body piece within a few days. Recent studies have shown that the bone morphogenetic protein (BMP) pathway is required to reestablish the dorsoventral (DV) axis. In vertebrates, the specification of the DV axis depends on the coordinated action of a dual organizer defined by BMP and antidorsalizing morphogenetic protein (ADMP) under the control of several factors, including the inhibitors chordin and noggin. Planarians have an expanded noggin family (up to ten members), which have been classified as canonical noggin (nog) and noggin-like (nlg) genes, the latter carrying an insertion within the noggin domain. Here we show that a BMP/ADMP organizer governs DV axis reestablishment during planarian regeneration, highlighting a greater-than-thought conservation of the mechanisms that establish this axis in protostomes and deuterostomes. Also, we report that whereas noggin genes function as canonical BMP inhibitors, the silencing of planarian nlg8 induces ectopic neurogenesis and enhances ventralizing bmp(RNAi) phenotypes. Finally, we show that noggin-like genes are conserved from cnidarian to vertebrates and that both planarian nlg8 and Xenopus nlg ventralize Xenopus embryos when overexpressed. Remarkably, this ventralization is not associated with an increase in SMAD1/5/8 phosphorylation.

???displayArticle.pubmedLink??? 21295481
???displayArticle.link??? Curr Biol


Species referenced: Xenopus
Genes referenced: chrd nog