Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-16400
Am J Physiol 1997 Jun 01;2726 Pt 2:H2932-41. doi: 10.1152/ajpheart.1997.272.6.H2932.
Show Gene links Show Anatomy links

Open channel block of human heart hKv1.5 by the beta-subunit hKv beta 1.2.

De Biasi M , Wang Z , Accili E , Wible B , Fedida D .


???displayArticle.abstract???
Voltage-gated K+ currents in human heart are likely to derive from multisubunit complexes of pore-forming alpha-subunits with one or more auxiliary beta-subunits. We recently cloned a novel beta-subunit from human atrium, hKv beta 1.2 (K. Majumder, M. De Biasi, Z. Wang, and B. A. Wible. FEBS Lett. 361: 13-16, 1995), and showed that it interacts with channels in the Kv1 family. Here we characterize the interaction of hKv beta 1.2 with hKv1.5 in terms of a two-closed-state and one-open-state open channel block model. After coexpression in Xenopus oocytes, hKv1.5 currents were reduced in the presence of hKv beta 1.2, and at positive potentials an inactivation process was introduced. Deactivation kinetics of hKv1.5 were slowed, and there was an increased steepness with a -14-mV hyperpolarizing shift in the midpoint of steady-state activation. The model was able to predict all the above features of the interaction of hKv1.5 and hKv beta 1.2 as a result of rapid open channel block of activated channels. Understanding the mechanism of hKv beta 1.2 action on heart K+ channels will further aid the development of the functional and pharmacological characterization of native cardiac K+ currents.

???displayArticle.pubmedLink??? 9227573
???displayArticle.link??? Am J Physiol
???displayArticle.grants??? [+]