Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-16513
Nature 1997 May 08;3876629:191-5. doi: 10.1038/387191a0.
Show Gene links Show Anatomy links

Segmental regulation of Hoxb-3 by kreisler.

Manzanares M , Cordes S , Kwan CT , Sham MH , Barsh GS , Krumlauf R .


???displayArticle.abstract???
Hox genes control regional identity during segmentation of the vertebrate hindbrain into rhombomeres. Here we use transgenic analysis to investigate the upstream mechanisms for regulation of Hoxb-3 in rhombomere(r)5. We identified enhancers from the mouse and chick genes sufficient for r5-restricted expression. Sequence comparisons revealed two blocks of similarity (of 19 and 45 base pairs), which each contain in vitro binding sites for the kreisler protein (Kmrl1), a Maf/b-Zip protein expressed in r5 and r6 (ref. 4). Both sites are required for r5 activity, suggesting that Hoxb-3 is a direct target of kreisler. Multimers of the 19-base-pair (bp) block recreate a Krml1-like pattern in r5/r6, but the 45-bp block mediates expression only in r5. Therefore elements within the 45-bp block restrict the response to Krml1. We identified additional sequences that contain an Ets-related activation site, required for both the activation and restriction to r5. These studies demonstrate that Krml1 directly activates expression of Hoxb-3 in r5 in combination with an Ets-related activation site, and suggest that kreisler plays a primary role in regulating segmental identity through Hox genes.

???displayArticle.pubmedLink??? 9144291
???displayArticle.link??? Nature


Species referenced: Xenopus
Genes referenced: hoxb3 maf mafb