Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-26830
Cell Struct Funct 1989 Apr 01;142:271-7. doi: 10.1247/csf.14.271.
Show Gene links Show Anatomy links

Mitosis-specific monoclonal antibodies block cleavage in amphibian embryos.

Davis FM , Wright DA , Penkala JE , Rao PN .


???displayArticle.abstract???
By microinjecting monoclonal antibodies that bind specifically to mitotic and meiotic cells of a variety of species, we studied the biological activity of antigens recognized by these antibodies. The antibodies recognize a family of phosphoprotein antigens that are found throughout the cytoplasm of mitotic cells and particularly at microtubule organizing centers, including centrosomes and kinetochores. Their binding is dependent on phosphorylation of the polypeptides. Immunoglobulins were introduced into Xenopus laevis and Rana pipiens oocytes or cleaving embryos using glass micropipettes. The ability of the antibody-injected oocytes to undergo mitosis or meiosis was compared with those injected with control mouse immunoglobulins. The antibodies failed to block chromosome condensation and germinal vesicle breakdown in progesterone-treated oocytes. However, functional mitotic spindles were not assembled in cleavage stage frog embryos injected with antibodies. In vitro, the binding of the antibodies to the antigens inhibited the dephosphorylation of the antigens by alkaline phosphatase. The antibody binding to the activated microtubule organizing centers (MTOC) seems to block not only the nucleation of microtubules and the organization of the mitotic spindle, but also the dephosphorylation of proteins associated with the MTOC that normally occurs at the mitosis-G1 transition.

???displayArticle.pubmedLink??? 2787211
???displayArticle.link??? Cell Struct Funct
???displayArticle.grants??? [+]