Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-6721
Anesthesiology 2002 Jun 01;966:1492-7. doi: 10.1097/00000542-200206000-00032.
Show Gene links Show Anatomy links

Effects of volatile anesthetics on glutamate transporter, excitatory amino acid transporter type 3: the role of protein kinase C.

Do SH , Kamatchi GL , Washington JM , Zuo Z .


???displayArticle.abstract???
BACKGROUND: Glutamate transporters play an important role in maintaining extracellular glutamate homeostasis. The authors studied the effects of volatile anesthetics on one type of glutamate transporters, excitatory amino acid transporter type 3 (EAAT3), and the role of protein kinase C in mediating these effects. METHODS: Excitatory amino acid transporter type 3 was expressed in Xenopus oocytes by injection of EAAT3 mRNA. Using two-electrode voltage clamp, membrane currents were recorded before, during, and after application of L-glutamate. Responses were quantified by integrating the current trace and are reported as microcoulombs. Data are mean +/- SEM. RESULTS: L-Glutamate-induced responses were increased gradually with the increased concentrations of isoflurane, a volatile anesthetic. At 0.52 and 0.70 mm isoflurane, the inward current was significantly increased compared with control. Isoflurane (0.70 mm) significantly increased Vmax (maximum velocity) (3.6 +/- 0.4 to 5.1 +/- 0.4 microC; P < 0.05) but not Km (Michoelis-Menten Constant) (55.4 +/- 17.0 vs. 61.7 +/- 13.6 microm; P > 0.05) of EAAT3 for glutamate compared with control. Treatment of the oocytes with phorbol-12-myrisate-13-acetate, a protein kinase C activator, caused a significant increase in transporter current (1.7 +/- 0.2 to 2.5 +/- 0.2 microC; P < 0.05). Responses in the presence of the combination of phorbol-12-myrisate-13-acetate and volatile anesthetics (isoflurane, halothane, or sevoflurane) were not greater than those when volatile anesthetic was present alone. Oocytes pretreated with any of the three protein kinase C inhibitors alone (chelerythrine, staurosporine, or calphostin C) did not affect basal transporter current. Although chelerythrine did not change the anesthetic effects on the activity of EAAT3, staurosporine or calphostin C abolished the anesthetic-induced increase of EAAT3 activity. CONCLUSIONS: These data suggest that volatile anesthetics enhance EAAT3 activity and that protein kinase C is involved in mediating these anesthetic effects.

???displayArticle.pubmedLink??? 12170065
???displayArticle.link??? Anesthesiology


Species referenced: Xenopus laevis
Genes referenced: slc1a1