Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-18617
J Neurochem 1996 Feb 01;662:667-75. doi: 10.1046/j.1471-4159.1996.66020667.x.
Show Gene links Show Anatomy links

Sustained nicotine exposure differentially affects alpha 3 beta 2 and alpha 4 beta 2 neuronal nicotinic receptors expressed in Xenopus oocytes.

Hsu YN , Amin J , Weiss DS , Wecker L .


???displayArticle.abstract???
To determine whether prolonged exposure to nicotine differentially affects alpha 3 beta 2 versus alpha 4 beta 2 nicotinic receptors expressed in Xenopus oocytes, oocytes were coinjected with subunit cRNAs, and peak responses to agonist, evoked by 0.7 or 7 microM nicotine for alpha 4 beta 2 and alpha 3 beta 2 receptors, respectively, were determined before and following incubation for up to 48 h with nanomolar concentrations of nicotine. Agonist responses of alpha 4 beta 2 receptors decreased in a concentration-dependent manner with IC50 values in the 10 nM range following incubation for 24 h and in the 1 nM range following incubation for 48 h. In contrast, responses of alpha 3 beta 2 receptors following incubation for 24-48 h with 1,000 nM nicotine decreased by only 50-60%, and total ablation of responses could not be achieved. Attenuation of responses occurred within the first 5 min of nicotine exposure and was a first-order process for both subtypes; half-lives for inactivation were 4.09 and 2.36 min for alpha 4 beta 2 and alpha 3 beta 2 receptors, respectively. Recovery was also first-order for both subtypes; half-lives for recovery were 21 and 7.5 h for alpha 4 beta 2 and alpha 3 beta 2 receptors, respectively. Thus, the responsiveness of both receptors decreased following sustained exposure to nicotine, but alpha 4 beta 2 receptors recovered much slower. Results may explain the differential effect of sustained nicotine exposure on nicotinic receptor-mediated neurotransmitter release.

???displayArticle.pubmedLink??? 8592138
???displayArticle.link??? J Neurochem
???displayArticle.grants??? [+]