Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-27425
J Cell Biol 1988 Jul 01;1071:45-56.
Show Gene links Show Anatomy links

Protein kinase activity associated with stored messenger ribonucleoprotein particles of Xenopus oocytes.

Cummings A , Sommerville J .


???displayArticle.abstract???
As the oocytes of Xenopus laevis grow and develop they accumulate vast stores of mRNA for use during early embryogenesis. The stored mRNA is stabilized and may be prevented from being translated in oocytes by the binding of a defined set of oocyte-specific proteins to form messenger RNP (mRNP) particles. A key event in the interaction of protein with mRNA is the phosphorylation of those few polypeptides that bind directly to all classes of polyadenylated mRNA. In this study we show that the phosphorylating enzyme (protein kinase), in addition to its target phosphoproteins, is an integral component of the mRNP particles. This association extends through various stages in the formation and use of the mRNP particles. Examination of material from oocytes of an early developmental stage (early stage 1), when the level of accumulated mRNA is low, reveals an excess of protein particles free of RNA, sedimenting at 6-18 S, and containing protein kinase activity and mRNA-binding phosphoproteins. At stages of maximum rate of mRNA accumulation (stages 1 and 2), the phosphoproteins and kinase are found primarily in individual mRNP particles that sediment at 40-80 S. As ribosomes become abundant (stages 2 and 3), the mRNP particles tend to interact with ribosomal subunits, at least in vitro, to form blocked translation initiation complexes that sediment at 80-110 S. These results are compared with observation on stored mRNP in other developmental systems.

???displayArticle.pubmedLink??? 3392105
???displayArticle.pmcLink??? PMC2115189




References [+] :
Audet, Eukaryotic initiation factor 4A stimulates translation in microinjected Xenopus oocytes. 1987, Pubmed, Xenbase