Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
???displayArticle.abstract???
Unlike the monosynaptic "stretch" reflex, the exact neuronal pathway for a simple cutaneous reflex has not yet been defined in any vertebrate. In young frog tadpoles, we made whole-cell recordings from pairs of spinal neurons. We found direct, excitatory, glutamatergic synapses from touch-sensitive skin-sensory neurons to sensory pathway interneurons, and then from these sensory interneurons to motoneurons and premotor interneurons on the other side of the body. We conclude that the minimal pathway for this primitive reflex, in which stroking the skin on one side leads to flexion on the other side, is disynaptic. This detailed circuit information has allowed us to ask whether the properties of glutamatergic synapses during the first day of CNS development are tuned to their function in the tadpole's responses. Stroking the skin excites a few sensory neurons. These activate primarily AMPA receptors producing short, strong excitation that activates many sensory pathway interneurons but only allows temporal summation of closely synchronous inputs. In contrast, the excitation produced in contralateral neurons by the sensory pathway interneurons is weak and primarily mediated by NMDA receptors. As a result, considerable summation is required for this excitation to lead to postsynaptic neuron firing and a contralateral flexion. We conclude that from their early functioning, synapses from sensory neurons are strong and those from sensory pathway interneurons are weak. The distribution of glutamate receptors at synapses in this developing circuit is tuned so that synapses have properties suited to their roles in the whole animal's reflex responses.
Bermingham,
Proprioceptor pathway development is dependent on Math1.
2001, Pubmed
Bermingham,
Proprioceptor pathway development is dependent on Math1.
2001,
Pubmed
Brodal,
The olivocerebellar projection in the monkey. Experimental studies with the method of retrograde tracing of horseradish peroxidase.
1981,
Pubmed
Clarke,
Interneurones in the Xenopus embryo spinal cord: sensory excitation and activity during swimming.
1984,
Pubmed
,
Xenbase
Clarke,
Sensory physiology, anatomy and immunohistochemistry of Rohon-Beard neurones in embryos of Xenopus laevis.
1984,
Pubmed
,
Xenbase
Dale,
Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord.
1985,
Pubmed
,
Xenbase
Dale,
Dual-component amino-acid-mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos.
1985,
Pubmed
,
Xenbase
Feldman,
Experience-dependent plasticity and the maturation of glutamatergic synapses.
1998,
Pubmed
Fleshman,
Supraspinal control of a short-latency cutaneous pathway to hindlimb motoneurons.
1988,
Pubmed
Gowan,
Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons.
2001,
Pubmed
Illert,
Integration in descending motor pathways controlling the forelimb in the cat. 2. Convergence on neurones mediating disynaptic cortico-motoneuronal excitation.
1976,
Pubmed
Kidokoro,
Reflex organization of cat masticatory muscles.
1968,
Pubmed
Li,
Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles.
2001,
Pubmed
,
Xenbase
Li,
Spinal inhibitory neurons that modulate cutaneous sensory pathways during locomotion in a simple vertebrate.
2002,
Pubmed
,
Xenbase
Reichert,
Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust.
1985,
Pubmed
Renger,
A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation.
2001,
Pubmed
Roberts,
Motoneurons of the axial swimming muscles in hatchling Xenopus tadpoles: features, distribution, and central synapses.
1999,
Pubmed
,
Xenbase
Roberts,
Simple mechanisms organise orientation of escape swimming in embryos and hatchling tadpoles of Xenopus laevis.
2000,
Pubmed
,
Xenbase
Roberts,
Characterization and Function of Spinal Excitatory Interneurons with Commissural Projections in Xenopus laevis embryos.
1990,
Pubmed
,
Xenbase
Rohrbough,
Ca(2+)-permeable AMPA receptors and spontaneous presynaptic transmitter release at developing excitatory spinal synapses.
1999,
Pubmed
,
Xenbase
Sillar,
A neuronal mechanism for sensory gating during locomotion in a vertebrate.
1988,
Pubmed
,
Xenbase
Sillar,
Unmyelinated cutaneous afferent neurons activate two types of excitatory amino acid receptor in the spinal cord of Xenopus laevis embryos.
1988,
Pubmed
,
Xenbase
Sillar,
The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos.
1992,
Pubmed
,
Xenbase
Soffe,
Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord.
1993,
Pubmed
,
Xenbase
Yoshida,
Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling.
1998,
Pubmed
,
Xenbase
Zhu,
Acute versus chronic NMDA receptor blockade and synaptic AMPA receptor delivery.
2002,
Pubmed
Ziv,
Principles of glutamatergic synapse formation: seeing the forest for the trees.
2001,
Pubmed