Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10219
J Neurobiol 2000 Nov 05;452:120-33. doi: 10.1002/1097-4695(20001105)45:2<120::aid-neu6>3.0.co;2-6.
Show Gene links Show Anatomy links

Nitric oxide modulates retinal ganglion cell axon arbor remodeling in vivo.

Cogen J , Cohen-Cory S .


???displayArticle.abstract???
Nitric oxide (NO) has been postulated to act as an activity-dependent retrograde signal that can mediate multiple aspects of synaptic plasticity during development. In the visual system, a role for NO in activity-dependent structural modification of presynaptic arbors has been proposed based on NO's ability to prune inappropriate projections and segregate axon terminals. However, evidence demonstrating that altered NO signaling does not perturb ocular dominance map formation leaves unsettled the role of NO during the in vivo refinement of visual connections. To determine whether NO modulates the structural remodeling of individual presynaptic terminal arbors in vivo we have: 1. Used NADPH-diaphorase histochemistry to determine the onset of NO synthase (NOS) expression in the Xenopus visual system. 2. Used in vivo time-lapse imaging to examine the role of NO during retinal ganglion cell (RGC) axon arborization. We show that NOS expression in the target optic tectum is developmentally regulated and localized to neurons that reside in close proximity to arborizing RGC axons. Moreover, we demonstrate that perturbations in tectal NO levels rapidly and significantly alter the dynamic branching of RGC arbors in vivo. Tectal injection of NO donors increased the addition of new branches, but not their stabilization in the long term. Tectal injection of NOS inhibitors increased the dynamic remodeling of axonal arbors by increasing branch addition and elimination and by lengthening pre-existing branches. Thus, these results indicate that altering NO signaling significantly modifies axon branch dynamics in a manner similar to altering neuronal activity levels (Cohen-Cory, 1999). Consequently, our results support a role for NO during the dynamic remodeling of axon arbors in vivo, and suggest that NO functions as an activity-dependent retrograde signal during the refinement of visual connections.

???displayArticle.pubmedLink??? 11018773
???displayArticle.link??? J Neurobiol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: nos1 nos3 prune1


???attribute.lit??? ???displayArticles.show???