Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-272
Methods Mol Biol 2006 Jan 01;322:445-58. doi: 10.1007/978-1-59745-000-3_32.
Show Gene links Show Anatomy links

Oocyte extracts for the study of meiotic M-M transition.

Ohsumi K , Yamamoto TM , Iwabuchi M .


???displayArticle.abstract???
In meiotic cell cycles, meiosis I (MI) is followed by meiosis II (MII) without an intervening S phase, whereas in mitotic cell cycles, an S phase necessarily alternates with an M phase. For the study of mitotic cell cycles, extracts prepared from unfertilized and parthenogenetically activated Xenopus eggs have been very useful as they can perform the progression of mitotic cycles in vitro. To establish a cell-free system to study the regulatory mechanisms of meiotic transition from MI to MII, extracts have been prepared from maturing Xenopus oocytes isolated from ovaries, stimulated with progesterone to induce the resumption of meiosis, and arrested at meiotic metaphase I by cold treatment. In oocyte extracts, the activity of cyclin B-Cdc2 complexes, the M phase inducer, fluctuates in the same manner as it does in maturing oocytes during the MI to MII transition period. By the use of oocyte extracts, it has been found that incomplete inactivation of Cdc2 at the end of MI is required for meiotic M-M transition. The meiotic extract should provide a useful tool to elucidate molecular mechanisms of meiotic M to M transition, including a role of Mos/mitogen-activated protein kinase cascade in the suppression of S phase entry after MI exit. In this chapter, we describe methods for the preparation and the uses of meiotic extracts. As a comparison, we also include a protocol for the preparation of mitotic extracts.

???displayArticle.pubmedLink??? 16739743
???displayArticle.link??? Methods Mol Biol


Species referenced: Xenopus laevis
Genes referenced: ccnb1.2 cdk1 mos