Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-48324
Nat Protoc 2014 Feb 01;92:294-304. doi: 10.1038/nprot.2014.033.
Show Gene links Show Anatomy links

Time-lapse X-ray phase-contrast microtomography for in vivo imaging and analysis of morphogenesis.

Moosmann J , Ershov A , Weinhardt V , Baumbach T , Prasad MS , LaBonne C , Xiao X , Kashef J , Hofmann R .


???displayArticle.abstract???
X-ray phase-contrast microtomography (XPCμT) is a label-free, high-resolution imaging modality for analyzing early development of vertebrate embryos in vivo by using time-lapse sequences of 3D volumes. Here we provide a detailed protocol for applying this technique to study gastrulation in Xenopus laevis (African clawed frog) embryos. In contrast to μMRI, XPCμT images optically opaque embryos with subminute temporal and micrometer-range spatial resolution. We describe sample preparation, culture and suspension of embryos, tomographic imaging with a typical duration of 2 h (gastrulation and neurulation stages), intricacies of image pre-processing, phase retrieval, tomographic reconstruction, segmentation and motion analysis. Moreover, we briefly discuss our present understanding of X-ray dose effects (heat load and radiolysis), and we outline how to optimize the experimental configuration with respect to X-ray energy, photon flux density, sample-detector distance, exposure time per tomographic projection, numbers of projections and time-lapse intervals. The protocol requires an interdisciplinary effort of developmental biologists for sample preparation and data interpretation, X-ray physicists for planning and performing the experiment and applied mathematicians/computer scientists/physicists for data processing and analysis. Sample preparation requires 9-48 h, depending on the stage of development to be studied. Data acquisition takes 2-3 h per tomographic time-lapse sequence. Data processing and analysis requires a further 2 weeks, depending on the availability of computing power and the amount of detail required to address a given scientific problem.

???displayArticle.pubmedLink??? 24407356
???displayArticle.link??? Nat Protoc




???attribute.lit??? ???displayArticles.show???
References [+] :
Batenburg, Fast approximation of algebraic reconstruction methods for tomography. 2012, Pubmed