Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-13436
Can J Physiol Pharmacol 1998 Sep 01;769:909-20. doi: 10.1139/cjpp-76-9-909.
Show Gene links Show Anatomy links

Modulation of GABA(A) receptor function by neuroactive steroids: evidence for heterogeneity of steroid sensitivity of recombinant GABA(A) receptor isoforms.

Maitra R , Reynolds JN .


???displayArticle.abstract???
Neuroactive steroids are potent, selective allosteric modulators of gamma-aminobutyric acid type A (GABA(A)) receptor function in the central nervous system, and may serve as endogenous anxiolytic and analgesic agents. In order to study the influence of subunit subtypes of the GABA(A) receptor on modulation of receptor function by neuroactive steroids, we expressed human recombinant GABA(A) receptors in Xenopus oocytes. GABA-activated membrane current, and the modulatory effects of the endogenous neurosteroid 5alpha-pregnan-3alpha-ol-20-one (allopregnanolone) and the synthetic steroid anesthetic 5alpha-pregnan-3alpha-ol-11,20-dione (alphaxalone) were measured using two-electrode voltage-clamp recording techniques. Allopregnanolone had similar effects to potentiate GABA-activated membrane current in the alpha1beta1gamma2L and alpha1beta2gamma2L receptor isoforms. In contrast, alphaxalone was much more effective as a positive allosteric modulator on the alpha1beta1gamma2L receptor isoform. In the absence of the gamma2L subunit subtype, allopregnanolone had much greater efficacy, but its potency was decreased. Allopregnanolone was much more effective on the alpha1beta1 receptor isoform compared with the alpha1beta2 receptor isoform. The potency for alphaxalone to potentiate the GABA response was not altered in the absence of the gamma2L subunit subtype, although its efficacy was greatly enhanced. Both allopregnanolone and alphaxalone produced nonparallel leftward shifts in the GABA concentration-response relationship in the absence of the gamma2L subunit, decreasing the EC50 concentration of GABA and increasing the maximal response. Only alphaxalone increased the maximal GABA response when the gamma2L subunit subtype was present. The 3beta-pregnane isomers epipregnanolone and isopregnanolone both inhibited the ability of allopregnanolone and alphaxalone to potentiate GABA(A) receptor function. However, the degree of block produced by the 3beta-pregnane steroid isomers was dependent on the type of receptor isoform studied and the neuroactive steroid tested. Isopregnanolone, the 3beta-isomer of allopregnanolone, was significantly more effective as a blocker of potentiation caused by allopregnanolone compared with alphaxalone in all receptor isoforms tested. Epipregnanolone had a greater efficacy as a blocker at the alpha1beta2gamma2L receptor isoform compared with the alpha1beta1gamma2L receptor isoform, and also produced a greater degree of block of potentiation caused by allopregnanolone compared with alphaxalone. Our results support the hypothesis that the heteromeric assembly of different GABA(A) receptor isoforms containing different subunit subtypes results in multiple steroid recognition sites on GABA(A) receptors, which in turn produces distinctly different modulatory interactions between neuroactive steroids acting at the GABA(A) receptor. The alpha and gamma subunit subtypes may have the greatest influence on allopregnanolone modulation of GABA(A) receptor function, whereas the beta and gamma subunit subtypes appear to be most important for the modulatory effects of alphaxalone.

???displayArticle.pubmedLink??? 10066142
???displayArticle.link??? Can J Physiol Pharmacol