XB-ART-12872
J Biol Chem
1999 Jun 18;27425:17424-30.
Show Gene links
Show Anatomy links
K+ binding sites and interactions between permeating K+ ions at the external pore mouth of an inward rectifier K+ channel (Kir2.1).
???displayArticle.abstract???
The arginine at position 148 is highly conserved in the inward rectifier K+ channel family. Increases of external pH decrease the single-channel conductance in mutant R148H of the Kir2.1 channel (arginine is mutated into histidine) but not in the wild type channel. Moreover, in 100 mM external K+, varying external pH induced biphasic changes of open channel noise, which peaks at around pH 7.4 in the R148H mutant but not in the wild type channel. The maximum single-channel conductances are higher in the wild type channel and R148H mutant at pH 6.0 than those in the R148H mutant at pH 7.4. However, the maximal conductance is achieved with much lower external [K+] for the latter. Interestingly, the single-channel conductances and open channel noise of the wild type channel at pH 6. 0 and the R148H mutant at pH 6.0 and 7.4 become the same in [K+] = 10 mM. These results indicate that the residue at position 148 is accessible to the external H+ and probably is involved in the formation of two K+ binding sites in the external pore mouth. Effective repulsion between permeating K+ ions in this area requires a positive charge at position 148, and such K+-K+ interaction is the essential mechanism underlying high K+ conduction rate through the Kir2.1 channel pore.
???displayArticle.pubmedLink??? 10364171
???displayArticle.link??? J Biol Chem
Species referenced: Xenopus
Genes referenced: kcnj2