Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-11968
J Cell Sci 1999 Dec 01;112 ( Pt 23):4337-46. doi: 10.1242/jcs.112.23.4337.
Show Gene links Show Anatomy links

XMAP230 is required for normal spindle assembly in vivo and in vitro.

Cha B , Cassimeris L , Gard DL .


???displayArticle.abstract???
XMAP230 is a high molecular mass microtubule-associated protein isolated from Xenopus oocytes and eggs, and has been recently shown to be a homolog of mammalian MAP4. Confocal immunofluorescence microscopy revealed that XMAP230 is associated with microtubules throughout the cell cycle of early Xenopus embryos. During interphase XMAP230 is associated with the radial arrays of microtubules and midbodies remaining from the previous division. During mitosis, XMAP230 is associated with both astral microtubules and microtubules of the central spindle. Microinjection of affinity-purified anti-XMAP230 antibody into blastomeres severely disrupted the assembly of mitotic spindles during the rapid cleavage cycles of early development. Both monopolar half spindles and bipolar spindles were assembled from XMAP230-depleted extracts in vitro. However, spindles assembled in XMAP230-depleted extracts exhibited a reduction in spindle width, reduced microtubule density, chromosome loss, and reduced acetylation of spindle MTs. Similar defects were observed in the spindles assembled in XMAP230-depleted extracts that had been cycled through interphase. Depletion of XMAP230 had no effect on the pole-to-pole length of spindles, and depletion of XMAP230 from both interphase and M-phase extracts had no effect on the rate of microtubule elongation. From these results, we conclude that XMAP230 plays an important role in normal spindle assembly, primarily by acting to stabilize spindle microtubules, and that the observed defects in spindle assembly may result from enhanced microtubule dynamics in XMAP230-depleted extracts.

???displayArticle.pubmedLink??? 10564651
???displayArticle.link??? J Cell Sci


Species referenced: Xenopus laevis
Genes referenced: map4