Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-56183
Neuron 2018 Jul 25;992:315-328.e5. doi: 10.1016/j.neuron.2018.06.010.
Show Gene links Show Anatomy links

Triheteromeric GluN1/GluN2A/GluN2C NMDARs with Unique Single-Channel Properties Are the Dominant Receptor Population in Cerebellar Granule Cells.

Bhattacharya S , Khatri A , Swanger SA , DiRaddo JO , Yi F , Hansen KB , Yuan H , Traynelis SF .


???displayArticle.abstract???
NMDA-type glutamate receptors (NMDARs) are ligand-gated ion channels that mediate excitatory neurotransmission in the CNS. Here we describe functional and single-channel properties of triheteromeric GluN1/GluN2A/GluN2C receptors, which contain two GluN1, one GluN2A, and one GluN2C subunits. This NMDAR has three conductance levels and opens in bursts similar to GluN1/GluN2A receptors but with a single-channel open time and open probability reminiscent of GluN1/GluN2C receptors. The deactivation time course of GluN1/GluN2A/GluN2C receptors is intermediate to GluN1/GluN2A and GluN1/GluN2C receptors and is not dominated by GluN2A or GluN2C. We show that triheteromeric GluN1/GluN2A/GluN2C receptors are the predominant NMDARs in cerebellar granule cells and propose that co-expression of GluN2A and GluN2C in cerebellar granule cells occludes cell surface expression of diheteromeric GluN1/GluN2C receptors. This new insight into neuronal GluN1/GluN2A/GluN2C receptors highlights the complexity of NMDAR signaling in the CNS.

???displayArticle.pubmedLink??? 30056832
???displayArticle.pmcLink??? PMC6090556
???displayArticle.link??? Neuron
???displayArticle.grants??? [+]



???attribute.lit??? ???displayArticles.show???
References [+] :
Akazawa, Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. 1994, Pubmed