Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-13145
Biochim Biophys Acta 1999 Apr 14;14181:176-84.
Show Gene links Show Anatomy links

Determinants of potassium channel assembly localised within the cytoplasmic C-terminal domain of Kv2.1.

Bentley GN , Brooks MA , O'Neill CA , Findlay JB .


???displayArticle.abstract???
The C-terminal domain of the voltage-gated potassium channel Kv2.1 is shown to have a role in channel assembly using dominant negative experiments in Xenopus oocytes. Kv2.1 channel polypeptides were co-expressed with a number of polypeptide fragments of the cytosolic C-terminus and the assembly of functional channel homotetramers quantified electrophysiologically using the two electrode voltage clamp technique. Co-expression of C-terminal polypeptides corresponding to the final 440, 318, 220 and 150 amino acid residues of Kv2.1 all resulted in a significant reduction in the functional expression of the full-length channel. A truncated version of Kv2.1 lacking the final 318 amino acids of the C-terminal domain (Kv2. 11-535) exhibited similar electrophysiological properties to the full-length channel. Co-expression with either the 440 or 318 residue polypeptides resulted in a reduction in the activity of the truncated channel. In contrast, the 220 and 150 residue C-terminal fragments had no effect on Kv2.11-535 activity. These data demonstrate that C-terminal interactions are important for driving Kv2.1 channel assembly and that distinct regions of the C-terminal domain may have differential effects on the formation of functional tetramers.

???displayArticle.pubmedLink??? 10209222
???displayArticle.link??? Biochim Biophys Acta
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: kcnb1