Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-39642
Mol Cell Biochem 2009 Sep 01;3291-2:17-33. doi: 10.1007/s11010-009-0121-6.
Show Gene links Show Anatomy links

The NM23 family in development.

Bilitou A , Watson J , Gartner A , Ohnuma S .


???displayArticle.abstract???
The NM23 (non-metastatic 23) family is almost universally conserved across all three domains of life: eubacteria, archaea and eucaryotes. Unicellular organisms possess one NM23 ortholog, whilst vertebrates possess several. Gene multiplication through evolution has been accompanied by structural and functional diversification. Many NM23 orthologs are nucleoside diphosphate kinases (NDP kinases), but some more recently evolved members lack NDP kinase activity and/or display other functions, for instance, acting as protein kinases or transcription factors. These members display overlapping but distinct expression patterns during vertebrate development. In this review, we describe the functional differences and similarities among various NM23 family members. Moreover, we establish orthologous relationships through a phylogenetic analysis of NM23 members across vertebrate species, including Xenopus laevis and zebrafish, primitive chordates and several phyla of invertebrates. Finally, we summarize the involvement of NM23 proteins in development, in particular neural development. Carcinogenesis is a process of misregulated development, and NM23 was initially implicated as a metastasis suppressor. A more detailed understanding of the evolution of the family and its role in vertebrate development will facilitate elucidation of the mechanism of NM23 involvement in human cancer.

???displayArticle.pubmedLink??? 19421718
???displayArticle.link??? Mol Cell Biochem


Species referenced: Xenopus laevis
Genes referenced: ndp

References [+] :
Amendola, DR-nm23 gene expression in neuroblastoma cells: relationship to integrin expression, adhesion characteristics, and differentiation. 1997, Pubmed