Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-2785
J Neurosci 2004 Nov 03;2444:10022-34. doi: 10.1523/JNEUROSCI.2034-04.2004.
Show Gene links Show Anatomy links

A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for beta subunit interaction.

Spampanato J , Kearney JA , de Haan G , McEwen DP , Escayg A , Aradi I , MacDonald BT , Levin SI , Soltesz I , Benna P , Montalenti E , Isom LL , Goldin AL , Meisler MH .


???displayArticle.abstract???
A mutation in the sodium channel SCN1A was identified in a small Italian family with dominantly inherited generalized epilepsy with febrile seizures plus (GEFS+). The mutation, D1866Y, alters an evolutionarily conserved aspartate residue in the C-terminal cytoplasmic domain of the sodium channel alpha subunit. The mutation decreased modulation of the alpha subunit by beta1, which normally causes a negative shift in the voltage dependence of inactivation in oocytes. There was less of a shift with the mutant channel, resulting in a 10 mV difference between the wild-type and mutant channels in the presence of beta1. This shift increased the magnitude of the window current, which resulted in more persistent current during a voltage ramp. Computational analysis suggests that neurons expressing the mutant channels will fire an action potential with a shorter onset delay in response to a threshold current injection, and that they will fire multiple action potentials with a shorter interspike interval at a higher input stimulus. These results suggest a causal relationship between a positive shift in the voltage dependence of sodium channel inactivation and spontaneous seizure activity. Direct interaction between the cytoplasmic C-terminal domain of the wild-type alpha subunit with the beta1 or beta3 subunit was first demonstrated by yeast two-hybrid analysis. The SCN1A peptide K1846-R1886 is sufficient for beta subunit interaction. Coimmunoprecipitation from transfected mammalian cells confirmed the interaction between the C-terminal domains of the alpha and beta1 subunits. The D1866Y mutation weakens this interaction, demonstrating a novel molecular mechanism leading to seizure susceptibility.

???displayArticle.pubmedLink??? 15525788
???displayArticle.pmcLink??? PMC6730248
???displayArticle.link??? J Neurosci
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: dtl scn1a

References [+] :
Abou-Khalil, Partial and generalized epilepsy with febrile seizures plus and a novel SCN1A mutation. 2001, Pubmed