Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-19205
Development 1995 Oct 01;12110:3311-21.
Show Gene links Show Anatomy links

Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula of Xenopus laevis.

Domingo C , Keller R .


???displayArticle.abstract???
We show that notochord-inducing signals are present during Xenopus laevis gastrulation and that they are important for both inducing and organizing cell behavior and differentiation in the notochord. Previous work showed that convergent extension of prospective notochordal and somitic mesoderm occurs by mediolateral cell intercalation to produce a longer, narrower tissue. Mediolateral cell intercalation is driven by bipolar, mediolaterally directed protrusive activity that elongates cells and then pulls them between one another along the mediolateral axis. This cell behavior, and subsequent notochordal cell differentiation, begins anteriorly and spreads posteriorly along the notochordal-somitic boundary, and from this lateral boundary progresses medially towards the center of the notochord field. To examine whether these progressions of cell behaviors and differentiation are induced and organized during gastrulation, we grafted labeled cells from the prospective notochordal, somitic and epidermal regions of the gastrula into the notochordal region and monitored their behavior by low light, fluorescence videomicroscopy. Prospective notochordal, epidermal and somitic cells expressed mediolateral cell intercalation behavior in an anterior-to-posterior and lateral-to-medial order established by the host notochord. Behavioral changes were induced first and most dramatically among cells grafted next to the notochordal-somitic boundary, particularly those in direct contact with the boundary, suggesting that the boundary may provide signals that both induce and organize notochordal cell behaviors. By physically impeding normal convergent extension movements, notochordal cell behaviors and differentiation were restricted to the anteriormost notochordal region and to the lateral notochordal-somitic boundary. These results show that mediolateral cell intercalation behavior and notochordal differentiation can be induced in the gastrula stage, among cells not normally expressing these characteristics, and that these characteristics are induced progressively, most likely by signals emanating from the notochordal-somitic boundary. In addition, they show that morphogenetic movements during gastrulation are necessary for complete notochord formation and that the prospective notochord region is not determined by the onset of gastrulation.

???displayArticle.pubmedLink??? 7588065

???displayArticle.grants??? [+]