Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-21601
Nature 1994 Feb 03;3676462:470-3. doi: 10.1038/367470a0.
Show Gene links Show Anatomy links

A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans.

Hong K , Driscoll M .


???displayArticle.abstract???
Aberrant ion channel activity plays a causative role in several human disorders. Inappropriately regulated channel activity also appears to be the basis for neurodegeneration induced by dominant mutations of Caenorhabditis elegans mec-4 (mec-4(d)), a member of the degenerin gene family postulated to encode a subunit of a mechanosensory channel. The degenerin gene family has been defined by two C. elegans genes, mec-4 and deg-1, which can mutate to gain-of-function alleles that induce degeneration of specific groups of neurons. A related mammalian gene, rat alpha-rENaC, induces an amiloride-sensitive Na+ current when introduced to Xenopus oocytes, strongly suggesting that degenerin genes encode ion channel proteins. Deduced amino-acid sequences of the degenerins include two predicted membrane-spanning domains. Here we show that conserved amino acids within the second membrane-spanning domain (MSDII) are critical for MEC-4 activity and that specific substitutions within MSDII, whether encoded in cis or in trans to a mec-4(d) mutation, block or delay the onset of degeneration. Remarkably, MSDII from two other family members, C. elegans deg-1 and rat alpha-rENaC, can functionally substitute for MEC-4 MSDII in chimaeric proteins. Our results support a structural model for a mechanosensory channels in which multiple MEC-4 subunits are oriented such that MSDII lines the channel pore, and a neurodegeneration model in which aberrant ion flow through this channel is a key event.

???displayArticle.pubmedLink??? 8107806
???displayArticle.link??? Nature



References :
Jentsch, Trinity of cation channels. 1994, Pubmed