Xenbase may experience sporadic downtime from September 1st to September 3rd due to scheduled IT maintenance work.

We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-37
Plant Biol (Stuttg) 2006 Jul 01;84:522-8. doi: 10.1055/s-2006-923877.
Show Gene links Show Anatomy links

Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana.

Mayer M , Ludewig U .


???displayArticle.abstract???
AtAMT1;1 was the founding member of the family of AMT/Rh ammonium transporters and accounts for about one third of the total ammonium absorption in the roots of the model plant Arabidopsis. Recent evidence suggested that at least some AMT/Rh proteins are NH3 gas channels. In order to evaluate the transported form of ammonium in AtAMT1;1, the protein was functionally expressed in Xenopus oocytes. AtAMT1;1 elicited NH4+ and methylammonium (MeA+) inward currents that saturated in a voltage-dependent manner with a half maximal concentration of 2.7 +/- 1.6 microM for NH4+ and 5.0 +/- 0.7 microM for the transport analogue methylammonium. AtAMT1;1 was plasma membrane localized and expressed in the root cortex and epidermis, including root hairs. The AtAMT1;1-GFP fusion construct under control of its endogenous promoter revealed additional localization of the protein in the pericycle, in the leaf epidermis, and in mesophyll cells. The functional data and its localization suggest that AtAMT1;1 participates in concentrative NH4+ acquisition in roots, in long-distance transport to the shoots, and in re-uptake of apoplastic NH4+ that derives from photorespiration in shoots.

???displayArticle.pubmedLink??? 16917981
???displayArticle.link??? Plant Biol (Stuttg)


Species referenced: Xenopus
Genes referenced: gnas