Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Rat brain glutamate receptors activate chloride channels in Xenopus oocytes coupled by inositol trisphosphate and Ca2+.
Oosawa Y
,
Yamagishi S
.
???displayArticle.abstract???
1. Ionic currents were studied in Xenopus laevis oocytes using the patch-clamp and the whole-cell voltage-clamp techniques. 2. Single-channel currents were recorded from the cell-attached patches in oocytes injected with rat brain mRNA when glutamate was applied locally outside the patch. The single-channel conductance was 3.66 pS, and the extrapolated equilibrium potential was -23.0 mV, indicating that the channels were chloride selective. 3. Single-channel currents with similar characteristics were observed in cell-attached patches in native oocytes in response to injection of inositol 1,4,5-trisphosphate (IP3) or Ca2+. 4. Whole-cell currents were evoked by glutamate in oocytes injected with rat brain mRNA. They usually showed an oscillatory component, and reversed direction at about the chloride equilibrium potential. Injection of IP3 or Ca2+ into a native oocyte evoked a transient whole-cell current. The reversal potential was near the chloride equilibrium potential, and it changed from negative to positive in low-chloride solution. 5. The results suggest that the glutamate receptors are not directly coupled with the endogenous chloride channels but indirectly activate these via the messenger system IP3-Ca2+.
Berridge,
Inositol trisphosphate, a novel second messenger in cellular signal transduction.
, Pubmed
Berridge,
Inositol trisphosphate, a novel second messenger in cellular signal transduction.
,
Pubmed
Busa,
Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores.
1985,
Pubmed
,
Xenbase
Cull-Candy,
Ion channels activated by L-glutamate and GABA in cultured cerebellar neurons of the rat.
1985,
Pubmed
Dascal,
Role of calcium mobilization in mediation of acetylcholine-evoked chloride currents in Xenopus laevis oocytes.
1985,
Pubmed
,
Xenbase
Gundersen,
Serotonin receptors induced by exogenous messenger RNA in Xenopus oocytes.
1983,
Pubmed
,
Xenbase
Gundersen,
Glutamate and kainate receptors induced by rat brain messenger RNA in Xenopus oocytes.
1984,
Pubmed
,
Xenbase
Hamill,
Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.
1981,
Pubmed
Hirono,
Characterization of mRNA responsible for induction of functional sodium channels in Xenopus oocytes.
1985,
Pubmed
,
Xenbase
Houamed,
Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA.
,
Pubmed
,
Xenbase
Kudo,
Glutamate-induced increase in intracellular Ca2+ concentration in isolated hippocampal neurones.
1986,
Pubmed
Methfessel,
Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels.
1986,
Pubmed
,
Xenbase
Miledi,
Chloride current induced by injection of calcium into Xenopus oocytes.
1984,
Pubmed
,
Xenbase
Nicoletti,
Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus.
1986,
Pubmed
Nowak,
Magnesium gates glutamate-activated channels in mouse central neurones.
,
Pubmed
Oron,
Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes.
,
Pubmed
,
Xenbase
Parker,
Changes in intracellular calcium and in membrane currents evoked by injection of inositol trisphosphate into Xenopus oocytes.
1986,
Pubmed
,
Xenbase
Parker,
Intracellular Ca2+-dependent and Ca2+-independent responses of rat brain serotonin receptors transplanted to Xenopus oocytes.
1985,
Pubmed
,
Xenbase
Sladeczek,
Glutamate stimulates inositol phosphate formation in striatal neurones.
,
Pubmed
Sugiyama,
A new type of glutamate receptor linked to inositol phospholipid metabolism.
,
Pubmed
,
Xenbase
Takahashi,
Rat brain serotonin receptors in Xenopus oocytes are coupled by intracellular calcium to endogenous channels.
1987,
Pubmed
,
Xenbase