XB-ART-24917
Science
1991 Apr 05;2525002:123-6.
Show Gene links
Show Anatomy links
Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes.
???displayArticle.abstract???
Intracellular calcium (Ca2+) is a ubiquitous second messenger. Information is encoded in the magnitude, frequency, and spatial organization of changes in the concentration of cytosolic free Ca2+. Regenerative spiral waves of release of free Ca2+ were observed by confocal microscopy in Xenopus laevis oocytes expressing muscarinic acetylcholine receptor subtypes. This pattern of Ca2+ activity is characteristic of an intracellular milieu that behaves as a regenerative excitable medium. The minimal critical radius for propagation of focal Ca2+ waves (10.4 micrometers) and the effective diffusion constant for the excitation signal (2.3 x 10(-6) square centimeters per second) were estimated from measurements of velocity and curvature of circular wavefronts expanding from foci. By modeling Ca2+ release with cellular automata, the absolute refractory period for Ca2+ stores (4.7 seconds) was determined. Other phenomena expected of an excitable medium, such as wave propagation of undiminished amplitude and annihilation of colliding wavefronts, were observed.
???displayArticle.pubmedLink??? 2011747
???displayArticle.link??? Science