XB-ART-6830
J Biol Chem
2002 Sep 27;27739:36345-50. doi: 10.1074/jbc.M205359200.
Show Gene links
Show Anatomy links
Distinct sites on G protein beta gamma subunits regulate different effector functions.
???displayArticle.abstract???
G proteins interact with effectors at multiple sites and regulate their activity. The functional significance of multiple contact points is not well understood. We previously identified three residues on distinct surfaces of Gbetagamma that are crucial for G protein-coupled inward rectifier K(+) (GIRK) channel activation. Here we show that mutations at these sites, S67K, S98T, and T128F, abolished or reduced direct GIRK current activation in inside-out patches, but, surprisingly, all mutants synergized with sodium in activating K(+) currents. Each of the three Gbeta(1) mutants bound the channel indicating that the defects reflected mainly functional impairments. We tested these mutants for functional interactions with effectors other than K(+) channels. With N-type calcium channels, Gbetagamma wild type and mutants all inhibited basal currents. A depolarizing pre-pulse relieved Gbetagamma inhibition of Ca(2+) currents by the wild type and the S98T and T128F mutants but not the S67K mutant. Both wild type and mutant Gbetagamma subunits activated phospholipase C beta(2) with similar potencies; however, the S67K mutant showed reduced maximal activity. These data establish a pattern where mutations can alter the Gbetagamma regulation of a specific effector function without affecting other Gbetagamma-mediated functions. Moreover, Ser-67 showed this pattern in all three effectors tested, suggesting that this residue participates in a common functional domain on Gbeta(1) that regulates several effectors. These data show that distinct domains within Gbetagamma subserve specific functional roles.
???displayArticle.pubmedLink??? 12124391
???displayArticle.link??? J Biol Chem
???displayArticle.grants???
Species referenced: Xenopus laevis
Genes referenced: kcnj3