Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-24228
Bioessays 1992 Jan 01;141:1-8. doi: 10.1002/bies.950140102.
Show Gene links Show Anatomy links

Chromatin replication.

Gruss C , Sogo JM .


???displayArticle.abstract???
Just as the faithful replication of DNA is an essential process for the cell, chromatin structures of active and inactive genes have to be copied accurately. Under certain circumstances, however, the activity pattern has to be changed in specific ways. Although analysis of specific aspects of these complex processes, by means of model systems, has led to their further elucidation, the mechanisms of chromatin replication in vivo are still controversial and far from being understood completely. Progress has been achieved in understanding: 1. The initiation of chromatin replication, indicating that a nucleosome-free origin is necessary for the initiation of replication; 2. The segregation of the parental nucleosomes, where convincing data support the model of random distribution of the parental nucleosomes to the daughter strands; and 3. The assembly of histones on the newly synthesized strands, where growing evidence is emerging for a two-step mechanism of nucleosome assembly, starting with the deposition of H3/H4 tetramers onto the DNA, followed by H2A/H2B dimers.

???displayArticle.pubmedLink??? 1312334
???displayArticle.link??? Bioessays


Species referenced: Xenopus laevis
Genes referenced: h2ac21 h2bc21