Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
???displayArticle.abstract???
Spemann's organizer has potent neural inducing and mesoderm dorsalizing activities in the Xenopus gastrula. A third activity, the organizer's ability to induce a secondary gut, has been difficult to analyze experimentally due to the lack of early gene markers. Here we introduce endodermin, a pan-endodermal gene marker, and use it to demonstrate that chordin (Chd), a protein secreted by the organizer region, is able to induce endodermal differentiation in Xenopus. The ability of chd, as well as that of noggin, to induce endoderm in animal cap explants is repressed by the ventralizing factor BMP-4. When FGF signaling is blocked by a dominant-negative FGF receptor in chd-injected animal caps, neural induction is inhibited and most of the explant is induced to become endoderm. The results suggest that proteins secreted by the organizer, acting together with known peptide growth factors, regulate differentiation of the endodermal germ layer.
Amaya,
Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos.
1991, Pubmed,
Xenbase
Amaya,
Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos.
1991,
Pubmed
,
Xenbase
Asashima,
The vegetalizing factor from chicken embryos: its EDF (activin A)-like activity.
1991,
Pubmed
Cho,
Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid.
1991,
Pubmed
,
Xenbase
Cooke,
The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor.
1987,
Pubmed
,
Xenbase
Cornell,
Activin-mediated mesoderm induction requires FGF.
1994,
Pubmed
,
Xenbase
Cox,
Caudalization of neural fate by tissue recombination and bFGF.
1995,
Pubmed
,
Xenbase
De Robertis,
A common plan for dorsoventral patterning in Bilateria.
1996,
Pubmed
,
Xenbase
Dirksen,
A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain.
1992,
Pubmed
,
Xenbase
Fainsod,
On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo.
1994,
Pubmed
,
Xenbase
Ferguson,
Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo.
1992,
Pubmed
Ferguson,
Localized enhancement and repression of the activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo.
1992,
Pubmed
Francois,
Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene.
1994,
Pubmed
Gamer,
Autonomous endodermal determination in Xenopus: regulation of expression of the pancreatic gene XlHbox 8.
1995,
Pubmed
,
Xenbase
Gont,
Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip.
1993,
Pubmed
,
Xenbase
Graff,
Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo.
1994,
Pubmed
,
Xenbase
Green,
The biological effects of XTC-MIF: quantitative comparison with Xenopus bFGF.
1990,
Pubmed
,
Xenbase
Harland,
In situ hybridization: an improved whole-mount method for Xenopus embryos.
1991,
Pubmed
,
Xenbase
Hemmati-Brivanlou,
Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity.
1994,
Pubmed
,
Xenbase
Henry,
TGF-beta signals and a pattern in Xenopus laevis endodermal development.
1996,
Pubmed
,
Xenbase
Holley,
A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin.
1995,
Pubmed
,
Xenbase
Keller,
Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer.
1975,
Pubmed
,
Xenbase
Kengaku,
Basic fibroblast growth factor induces differentiation of neural tube and neural crest lineages of cultured ectoderm cells from Xenopus gastrula.
1993,
Pubmed
,
Xenbase
Kengaku,
bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus.
1995,
Pubmed
,
Xenbase
LaBonne,
Mesoderm induction by activin requires FGF-mediated intracellular signals.
1994,
Pubmed
,
Xenbase
Lamb,
Neural induction by the secreted polypeptide noggin.
1993,
Pubmed
,
Xenbase
Lamb,
Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern.
1995,
Pubmed
,
Xenbase
Launay,
A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers.
1996,
Pubmed
,
Xenbase
Levin,
A molecular pathway determining left-right asymmetry in chick embryogenesis.
1995,
Pubmed
Niehrs,
Mesodermal patterning by a gradient of the vertebrate homeobox gene goosecoid.
1994,
Pubmed
,
Xenbase
Padgett,
Human BMP sequences can confer normal dorsal-ventral patterning in the Drosophila embryo.
1993,
Pubmed
Ruiz i Altaba,
Ectopic neural expression of a floor plate marker in frog embryos injected with the midline transcription factor Pintallavis.
1993,
Pubmed
,
Xenbase
Sasai,
Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus.
1995,
Pubmed
,
Xenbase
Sasai,
Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes.
1994,
Pubmed
,
Xenbase
Schmidt,
Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo.
1995,
Pubmed
,
Xenbase
Schulte-Merker,
Mesoderm formation in response to Brachyury requires FGF signalling.
1995,
Pubmed
,
Xenbase
Shih,
The epithelium of the dorsal marginal zone of Xenopus has organizer properties.
1992,
Pubmed
,
Xenbase
Smith,
Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos.
1992,
Pubmed
,
Xenbase
Steinbeisser,
The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: a loss-of-function study using antisense RNA.
1995,
Pubmed
,
Xenbase
Su,
Expression of two nonallelic type II procollagen genes during Xenopus laevis embryogenesis is characterized by stage-specific production of alternatively spliced transcripts.
1991,
Pubmed
,
Xenbase
Suzuki,
A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo.
1994,
Pubmed
,
Xenbase
Taira,
The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos.
1992,
Pubmed
,
Xenbase
Thomsen,
Processed Vg1 protein is an axial mesoderm inducer in Xenopus.
1993,
Pubmed
,
Xenbase
Tiedemann,
The vegetalizing factor. A member of the evolutionarily highly conserved activin family.
1992,
Pubmed
,
Xenbase
Vaughan,
Alpha 2-macroglobulin is a binding protein of inhibin and activin.
1993,
Pubmed
von Dassow,
Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene.
1993,
Pubmed
,
Xenbase
Webb,
Transforming growth factor beta isoform 2-specific high affinity binding to native alpha 2-macroglobulin. Chimeras identify a sequence that determines affinity for native but not activated alpha 2-macroglobulin.
1994,
Pubmed
Wharton,
An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo.
1993,
Pubmed
Wilson,
Induction of epidermis and inhibition of neural fate by Bmp-4.
1995,
Pubmed
,
Xenbase
Xu,
A dominant negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm.
1995,
Pubmed
,
Xenbase
Zusman,
short gastrulation, a mutation causing delays in stage-specific cell shape changes during gastrulation in Drosophila melanogaster.
1988,
Pubmed