Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-49396
Infect Immun 2014 Nov 01;8211:4698-706. doi: 10.1128/IAI.02231-14.
Show Gene links Show Anatomy links

Inhibition of local immune responses by the frog-killing fungus Batrachochytrium dendrobatidis.

Fites JS , Reinert LK , Chappell TM , Rollins-Smith LA .


???displayArticle.abstract???
Amphibians are suffering unprecedented global declines. A leading cause is the infectious disease chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis. Chytridiomycosis is a skin disease which disrupts transport of essential ions leading to death. Soluble factors produced by B. dendrobatidis impair amphibian and mammalian lymphocytes in vitro, but previous studies have not shown the effects of these inhibitory factors in vivo. To demonstrate in vivo inhibition of immunity by B. dendrobatidis, a modified delayed-type-hypersensitivity (DTH) protocol was developed to induce innate and adaptive inflammatory swelling in the feet of Xenopus laevis by injection of killed bacteria or phytohemagglutinin (PHA). Compared to previous protocols for PHA injection in amphibians, this method induced up to 20-fold greater inflammatory swelling. Using this new protocol, we measured DTH responses induced by killed bacteria or PHA in the presence of B. dendrobatidis supernatants. Swelling induced by single injection of PHA or killed bacteria was not significantly affected by B. dendrobatidis supernatants. However, swelling caused by a secondary injection of PHA, was significantly reduced by B. dendrobatidis supernatants. As previously described in vitro, factors from B. dendrobatidis appear to inhibit lymphocyte-mediated inflammatory swelling but not swelling caused by an inducer of innate leukocytes. This suggests that B. dendrobatidis is capable of inhibiting lymphocytes in a localized response to prevent adaptive immune responses in the skin. The modified protocol used to induce inflammatory swelling in the present study may be more effective than previous methods to investigate amphibian immune competence, particularly in nonmodel species.

???displayArticle.pubmedLink??? 25156734
???displayArticle.pmcLink??? PMC4249309
???displayArticle.link??? Infect Immun


Species referenced: Xenopus laevis
Genes referenced: herpud1
GO keywords: adaptive immune response [+]


???attribute.lit??? ???displayArticles.show???
References [+] :
Becker, Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. 2010, Pubmed