Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-5226
Biophys J 2003 Jun 01;846:3679-89. doi: 10.1016/S0006-3495(03)75097-8.
Show Gene links Show Anatomy links

Pore- and state-dependent cadmium block of I(Ks) channels formed with MinK-55C and wild-type KCNQ1 subunits.

Chen H , Sesti F , Goldstein SA .


???displayArticle.abstract???
Human MinK and KCNQ1 subunits assemble to form I(Ks) channels. When MinK position 55 is mutated to cysteine (MinK-55C), I(Ks) channels can be blocked by external cadmium (Cd(2+)). We have supported a pore-associated location for MinK-55C because Cd(2+) block is sensitive to voltage, permeant ions on the opposite side of the membrane (trans-ions), and external tetraethylammonium (TEA), an I(Ks) pore-blocker. Two recent reports argue that MinK-55C is distant from the pore: one finds TEA does not affect Cd(2+) block if channels are formed with a KCNQ1 mutant (K318I, V319Y) that increases TEA affinity; the second proposes that Cd(2+) binds between MinK-55C and a cysteine in KCNQ1 that is posited to lie toward the channel periphery. Here, these discrepancies are considered. First, Cd(2+) block of MinK-55C channels formed with wild-type KCNQ1 is shown to depend not only on voltage and trans-ions but state (showing decreased on-rate with increased open time and blocker trapping on channel closure). Conversely, MinK-55C channels with K318I, V319Y KCNQ1 are found to demonstrate Cd(2+) block that is independent of voltage, trans-ions and state (and to have a lower unitary conductance): thus, the KCNQ1 mutations alter the process under study, yielding Cd(2+) inhibition that is pore-independent and, perforce, TEA-insensitive. Second, MinK-55C channels are found to remain sensitive to Cd(2+) despite mutation of any single native cysteine in KCNQ1 or all nine simultaneously; this suggests no KCNQ1 cysteine binds Cd(2+) and can serve to localize MinK-55C. Despite many concerns that are enumerated, we remain obliged to conclude that Cd(2+) enters and leaves the pore to reach MinK-55C, placing that residue in or near the pore.

???displayArticle.pubmedLink??? 12770875
???displayArticle.pmcLink??? PMC1302951
???displayArticle.link??? Biophys J


Species referenced: Xenopus laevis
Genes referenced: kcne1 kcnq1 mink1

References [+] :
Abbott, Potassium channel subunits encoded by the KCNE gene family: physiology and pathophysiology of the MinK-related peptides (MiRPs). 2001, Pubmed