Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-926
J Biol Chem 2006 Feb 10;2816:3305-11. doi: 10.1074/jbc.M502000200.
Show Gene links Show Anatomy links

Occupancy of a single anesthetic binding pocket is sufficient to enhance glycine receptor function.

Roberts MT , Phelan R , Erlichman BS , Pillai RN , Ma L , Lopreato GF , Mihic SJ .


???displayArticle.abstract???
Alcohols and volatile anesthetics enhance the function of inhibitory glycine receptors (GlyRs). This is hypothesized to occur by their binding to a pocket formed between the transmembrane domains of individual alpha1 GlyR subunits. Because GlyRs are pentameric, it follows that each GlyR contains up to five alcohol/anesthetic binding sites, with one in each subunit. We asked how many subunits per pentamer need be bound by drug in order to enhance receptor-mediated currents. A cysteine mutation was introduced at amino acid serine 267 (S267C) in the transmembrane 2 domain as a tool to block GlyR potentiation by some anesthetic drugs and to provide a means for covalent binding by the small, anesthetic-like thiol reagent propyl methanethiosulfonate. Xenopus laevis oocytes were co-injected with various ratios of wild-type (wt) to S267C alpha1 GlyR cDNAs in order to express heteromeric receptors with a range of wt:mutant subunit stoichiometries. The enhancement of GlyR currents by 200 mm ethanol and 1.5 mm chloroform was positively correlated with the number of wt subunits found in heteromeric receptors. Furthermore, currents from oocytes injected with high ratios of wt to S267C cDNAs (up to 200:1) were significantly and irreversibly enhanced following propyl methanethiosulfonate labeling and washout, demonstrating that drug binding to a single subunit in the receptor pentamer is sufficient to induce enhancement of GlyR currents.

???displayArticle.pubmedLink??? 16361257
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]